No Arabic abstract
We investigate the dependance of galaxy sizes and star-formation rates (SFRs) on environment using a mass-limited sample of quiescent and star-forming galaxies with M>10^9.5 at z=0.92 selected from the NMBS survey. Using the GEEC2 spectroscopic cluster catalog and the accurate photometric redshifts from NMBS, we select quiescent and star-forming cluster (sigma=490 km/s) galaxies within two virial radius, Rvir, intervals of 0.5<Rvir<2 and Rvir<0.5. Galaxies residing outside of 2 Rvir of both the cluster centres and additional candidate over-densities are defined as our field sample. Galaxy structural parameters are measured from the COSMOS legacy HST/ACS F814W image. The sizes and Sersic indices of quiescent field and cluster galaxies have the same distribution regardless of Rvir. However, cluster star-forming galaxies within 0.5 Rvir have lower mass-normalised average sizes, by 16${pm}7%$, and a higher fraction of Sersic indices with n>1, than field star-forming galaxies. The average SFRs of star-forming cluster galaxies show a trend of decreasing SFR with clustocentric radius. The mass-normalised average SFR of cluster star-forming galaxies is a factor of 2-2.5 (7-9 sigma) lower than that of star-forming galaxies in the field. While we find no significant dependence on environment for quiescent galaxies, the properties of star-forming galaxies are affected, which could be the result of environment acting on their gas content.
Combining the catalogue of galaxy morphologies in the COSMOS field and the sample of H$alpha$ emitters at redshifts $z=0.4$ and $z=0.84$ of the HiZELS survey, we selected $sim$ 220 star-forming bulgeless systems (Sersic index $n leq 1.5$) at both epochs. We present their star formation properties and we investigate their contribution to the star formation rate function (SFRF) and global star formation rate density (SFRD) at $z < 1$. For comparison, we also analyse H$alpha$ emitters with more structurally evolved morphologies that we split into two classes according to their Sersic index $n$: intermediate ($ 1.5 < n leq 3 $) and bulge-dominated ($n > 3$). At both redshifts the SFRF is dominated by the contribution of bulgeless galaxies and we show that they account for more than 60% of the cosmic SFRD at $z < 1$. The decrease of the SFRD with redshift is common to the three morphological types but it is stronger for bulge-dominated systems. Star-forming bulgeless systems are mostly located in regions of low to intermediate galaxy densities ($Sigma sim 1 - 4$ Mpc$^{-2}$) typical of field-like and filament-like environments and their specific star formation rates (sSFRs) do not appear to vary strongly with local galaxy density. Only few bulgeless galaxies in our sample have high (sSFR $>$ 10$^{-9}$ yr$^{-1}$) and these are mainly low-mass systems. Above $M_* sim 10^{10}$ M$_{odot}$ bulgeless are evolving at a normal rate (10$^{-9}$ yr$^{-1} <$ sSFR $<$10$^{-10}$ yr$^{-1}$) and in the absence of an external trigger (i.e. mergers/strong interactions) they might not be able to develop a central classical bulge.
Using the Herschel Space Observatory we have observed a representative sample of 87 powerful 3CR sources at redshift z < 1. The far-infrared (FIR, 70-500 micron) photometry is combined with mid-infrared (MIR) photometry from the Wide-Field Infrared Survey Explorer (WISE) and catalogued data to analyse the complete spectral energy distributions (SEDs) of each object from optical to radio wavelength. To disentangle the contributions of different components, the SEDs are fitted with a set of templates to derive the luminosities of host galaxy starlight, dust torus emission powered by active galactic nuclei (AGN) and cool dust heated by stars. The level of emission from relativistic jets is also estimated, in order to isolate the thermal host galaxy contribution. The new data are in line with the orientation-based unification of high-excitation radio-loud AGN, in that the dust torus becomes optically thin longwards of 30 micron. The low excitation radio galaxies and the MIR weak sources represent MIR- and FIR-faint AGN population different from the high-excitation MIR-bright objects; it remains an open question whether they are at a later evolutionary state or an intrinsically different population. The derived luminosities for host starlight and dust heated by star formation are converted to stellar masses and star formation rates (SFR). The host-normalized SFR of the bulk of the 3CR sources is low when compared to other galaxy populations at the same epoch. Estimates of the dust mass yield a 1--100 times lower dust/stellar mass ratio than for the Milky Way, indicating that these 3CR hosts have very low levels of interstellar matter explaining the low level of star formation. Less than 10% of the 3CR sources show levels of star formation above those of the main sequence of star forming galaxies.
We investigate the role of the delineated cosmic web/filaments on the star formation activity by exploring a sample of 425 narrow-band selected H{alpha} emitters, as well as 2846 color-color selected underlying star-forming galaxies for a large scale structure (LSS) at z=0.84 in the COSMOS field from the HiZELS survey. Using the scale-independent Multi-scale Morphology Filter (MMF) algorithm, we are able to quantitatively describe the density field and disentangle it into its major components: fields, filaments and clusters. We show that the observed median star formation rate (SFR), stellar mass, specific star formation rate (sSFR), the mean SFR-Mass relation and its scatter for both H{alpha} emitters and underlying star-forming galaxies do not strongly depend on different classes of environment, in agreement with previous studies. However, the fraction of H{alpha} emitters varies with environment and is enhanced in filamentary structures at z~1. We propose mild galaxy-galaxy interactions as the possible physical agent for the elevation of the fraction of H{alpha} star-forming galaxies in filaments. Our results show that filaments are the likely physical environments which are often classed as the intermediate densities, and that the cosmic web likely plays a major role in galaxy formation and evolution which has so far been poorly investigated.
We investigate the burstiness of star formation histories (SFHs) of galaxies at $0.4<z<1$ by using the ratio of star formation rates (SFRs) measured from H$beta$ and FUV (1500 AA) (H$beta$--to--FUV ratio). Our sample contains 164 galaxies down to stellar mass (M*) of $10^{8.5} M_odot$ in the CANDELS GOODS-N region, where Team Keck Redshift Survey DEIMOS spectroscopy and HST/WFC3 F275W images from CANDELS and Hubble Deep UV Legacy Survey are available. When the {it ratio} of H$beta$- and FUV-derived SFRs is measured, dust extinction correction is negligible (except for very dusty galaxies) with the Calzetti attenuation curve. The H$beta$--to--FUV ratio of our sample increases with M* and SFR. The median ratio is $sim$0.7 at M*$sim10^{8.5} M_odot$ (or SFR$sim 0.5 M_odot/yr$) and increases to $sim$1 at M*$sim10^{10} M_odot$ (or SFR $sim 10 M_odot/yr$). At M*$<10^{9.5} M_odot$, our median H$beta$--to--FUV ratio is lower than that of local galaxies at the same M*, implying a redshift evolution. Bursty SFH on a timescale of a few tens of megayears on galactic scales provides a plausible explanation of our results, and the importance of the burstiness increases as M* decreases. Due to sample selection effects, our H$beta$--to--FUV ratio may be an upper limit of the true value of a complete sample, which strengthens our conclusions. Other models, e.g., non-universal initial mass function or stochastic star formation on star cluster scales, are unable to plausibly explain our results.
We investigate the star formation histories (SFHs) of high redshift (3 <~ z <~ 5) star-forming galaxies selected based on their rest-frame ultraviolet (UV) colors in the CANDELS/GOODS-S field. By comparing the results from the spectral-energy-distribution-fitting analysis with two different assumptions about the SFHs --- i.e., exponentially declining SFHs as well as increasing ones, we conclude that the SFHs of high-redshift star-forming galaxies increase with time rather than exponentially decline. We also examine the correlations between the star formation rates (SFRs) and the stellar masses. When the galaxies are fit with rising SFRs, we find that the trend seen in the data qualitatively matches the expectations from a semi-analytic model of galaxy formation. The mean specific SFR is shown to increase with redshift, also in agreement with the theoretical prediction. From the derived tight correlation between stellar masses and SFRs, we derive the mean SFH of star-forming galaxies in the redshift range of 3 <~ z <~ 5, which shows a steep power-law (with power alpha = 5.85) increase with time. We also investigate the formation timescales and the mean stellar population ages of these star-forming galaxies. Our analysis reveals that UV-selected star-forming galaxies have a broad range of the formation redshift. The derived stellar masses and the stellar population ages show positive correlation in a sense that more massive galaxies are on average older, but with significant scatter. This large scatter implies that the galaxies mass is not the only factor which affects the growth or star formation of high-redshift galaxies.