Do you want to publish a course? Click here

Cosmic Web and Star Formation Activity in Galaxies at z~1

163   0   0.0 ( 0 )
 Added by Behnam Darvish
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the role of the delineated cosmic web/filaments on the star formation activity by exploring a sample of 425 narrow-band selected H{alpha} emitters, as well as 2846 color-color selected underlying star-forming galaxies for a large scale structure (LSS) at z=0.84 in the COSMOS field from the HiZELS survey. Using the scale-independent Multi-scale Morphology Filter (MMF) algorithm, we are able to quantitatively describe the density field and disentangle it into its major components: fields, filaments and clusters. We show that the observed median star formation rate (SFR), stellar mass, specific star formation rate (sSFR), the mean SFR-Mass relation and its scatter for both H{alpha} emitters and underlying star-forming galaxies do not strongly depend on different classes of environment, in agreement with previous studies. However, the fraction of H{alpha} emitters varies with environment and is enhanced in filamentary structures at z~1. We propose mild galaxy-galaxy interactions as the possible physical agent for the elevation of the fraction of H{alpha} star-forming galaxies in filaments. Our results show that filaments are the likely physical environments which are often classed as the intermediate densities, and that the cosmic web likely plays a major role in galaxy formation and evolution which has so far been poorly investigated.

rate research

Read More

106 - J. Diaz Tello 2016
Aims. We present a spectroscopic study of the properties of 64 Balmer break galaxies that show signs of star formation. The studied sample of star-forming galaxies spans a redshift range from 0.094 to 1.475 with stellar masses in the range 10$^{8}-$10$^{12}$ $M_{odot}$. The sample also includes eight broad emission line galaxies with redshifts between 1.5 $<z<$ 3.0. Methods. We derived star formation rates (SFRs) from emission line luminosities and investigated the dependence of the SFR and specific SFR (SSFR) on the stellar mass and color. Furthermore, we investigated the evolution of these relations with the redshift. Results. We found that the SFR correlates with the stellar mass, our data is consistent with previous results from other authors in that there is a break in the correlation, which reveals the presence of massive galaxies with lower SFR values (i.e., decreasing star formation). We also note an anticorrelation for the SSFR with the stellar mass. Again in this case, our data is also consistent with a break in the correlation, revealing the presence of massive star-forming galaxies with lower SSFR values, thereby increasing the anticorrelation. These results might suggest a characteristic mass ($M_{0}$) at which the red sequence could mostly be assembled. In addition, at a given stellar mass, high-redshift galaxies have on average higher SFR and SSFR values than local galaxies. Finally, we explored whether a similar trend could be observed with redshift in the SSFR$-(u-B)$ color diagram, and we hypothesize that a possible $(u-B)_{0}$ break color may define a characteristic color for the formation of the red sequence.
103 - Jonathan R. Trump 2012
We present some of the first science data with the new Keck/MOSFIRE instrument to test the effectiveness of different AGN/SF diagnostics at z~1.5. MOSFIRE spectra were obtained in three H-band multi-slit masks in the GOODS-S field, resulting in two hour exposures of 36 emission-line galaxies. We compare X-ray data with the traditional emission-line ratio diagnostics and the alternative mass-excitation and color-excitation diagrams, combining new MOSFIRE infrared data with previous HST/WFC3 infrared spectra (from the 3D-HST survey) and multiwavelength photometry. We demonstrate that a high [OIII]/Hb ratio is insufficient as an AGN indicator at z>1. For the four X-ray detected galaxies, the classic diagnostics ([OIII]/Hb vs. [NII]/Ha and [SII]/Ha) remain consistent with X-ray AGN/SF classification. The X-ray data also suggest that composite galaxies (with intermediate AGN/SF classification) host bona-fide AGNs. Nearly 2/3 of the z~1.5 emission-line galaxies have nuclear activity detected by either X-rays or the classic diagnostics. Compared to the X-ray and line ratio classifications, the mass-excitation method remains effective at z>1, but we show that the color-excitation method requires a new calibration to successfully identify AGNs at these redshifts.
Using the Herschel Space Observatory we have observed a representative sample of 87 powerful 3CR sources at redshift z < 1. The far-infrared (FIR, 70-500 micron) photometry is combined with mid-infrared (MIR) photometry from the Wide-Field Infrared Survey Explorer (WISE) and catalogued data to analyse the complete spectral energy distributions (SEDs) of each object from optical to radio wavelength. To disentangle the contributions of different components, the SEDs are fitted with a set of templates to derive the luminosities of host galaxy starlight, dust torus emission powered by active galactic nuclei (AGN) and cool dust heated by stars. The level of emission from relativistic jets is also estimated, in order to isolate the thermal host galaxy contribution. The new data are in line with the orientation-based unification of high-excitation radio-loud AGN, in that the dust torus becomes optically thin longwards of 30 micron. The low excitation radio galaxies and the MIR weak sources represent MIR- and FIR-faint AGN population different from the high-excitation MIR-bright objects; it remains an open question whether they are at a later evolutionary state or an intrinsically different population. The derived luminosities for host starlight and dust heated by star formation are converted to stellar masses and star formation rates (SFR). The host-normalized SFR of the bulk of the 3CR sources is low when compared to other galaxy populations at the same epoch. Estimates of the dust mass yield a 1--100 times lower dust/stellar mass ratio than for the Milky Way, indicating that these 3CR hosts have very low levels of interstellar matter explaining the low level of star formation. Less than 10% of the 3CR sources show levels of star formation above those of the main sequence of star forming galaxies.
We investigate the relation between AGN and star formation (SF) activity at $0.5 < z < 3$ by analyzing 898 galaxies with X-ray luminous AGN ($L_X > 10^{44}$ erg s$^{-1}$) and a large comparison sample of $sim 320,000$ galaxies without X-ray luminous AGN. Our samples are selected from a large (11.8 deg$^2$) area in Stripe 82 that has multi-wavelength (X-ray to far-IR) data. The enormous comoving volume ($sim 0.3$ Gpc$^3$) at $0.5 < z < 3$ minimizes the effects of cosmic variance and captures a large number of massive galaxies ($sim 30,000$ galaxies with $M_* > 10^{11} M_{odot}$) and X-ray luminous AGN. While many galaxy studies discard AGN hosts, we fit the SED of galaxies with and without X-ray luminous AGN with Code Investigating GALaxy Emission (CIGALE) and include AGN emission templates. We find that without this inclusion, stellar masses and star formation rates (SFRs) in AGN host galaxies can be overestimated, on average, by factors of up to $sim 5$ and $sim 10$, respectively. The average SFR of galaxies with X-ray luminous AGN is higher by a factor of $sim 3$ to $10$ compared to galaxies without X-ray luminous AGN at fixed stellar mass and redshift, suggesting that high SFRs and high AGN X-ray luminosities may be fueled by common mechanisms. The vast majority ($> 95 %$) of galaxies with X-ray luminous AGN at $z=0.5-3$ do not show quenched SF: this suggests that if AGN feedback quenches SF, the associated quenching process takes a significant time to act and the quenched phase sets in after the highly luminous phases of AGN activity.
160 - Ken-ichi Tadaki 2010
We present a pilot narrow-band survey of H-alpha emitters at z=2.2 in the Great Observatories Origins Deep Survey North (GOODS-N) field with MOIRCS instrument on the Subaru telescope. The survey reached a 3 sigma limiting magnitude of 23.6 (NB209) which corresponds to a 3 sigma limiting line flux of 2.5 x 10^-17 erg s^-1 cm^-2 over a 56 arcmnin^2 contiguous area (excluding a shallower area). From this survey, we have identified 11 H-alpha emitters and one AGN at z=2.2 on the basis of narrow-band excesses and photometric redshifts. We obtained spectra for seven new objects among them, including one AGN, and an emission line above 3 sigma is detected from all of them. We have estimated star formation rates (SFR) and stellar masses (M_star) for individual galaxies. The average SFR and M_star is 27.8M_solar yr^-1 and 4.0 x 10^10M_solar, respectivly. Their specific star formation rates are inversely correlated with their stellar masses. Fitting to a Schechter function yields the H-alpha luminosity function with log L = 42.82, log phi = -2.78 and alpha = -1.37. The average star formation rate density in the survey volume is estimated to be 0.31M_solar yr^-1Mpc^-3 according to the Kennicutt relation between H-alpha luminosity and star formation rate. We compare our H-alpha emitters at z=2.2 in GOODS-N with narrow-band line emitters in other field and clusters to see their time evolution and environmental dependence. We find that the star formation activity is reduced rapidly from z=2.5 to z=0.8 in the cluster environment, while it is only moderately changed in the field environment. This result suggests that the timescale of galaxy formation is different among different environments, and the star forming activities in high density regions eventually overtake those in lower density regions as a consequence of galaxy formation bias at high redshifts.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا