No Arabic abstract
Logic-qubit entanglement has attracted much attention in both quantum communication and quantum computation. Here, we present an efficient protocol to distill the logic-qubit entanglement with the help of cross-Kerr nonlinearity. This protocol not only can purify the logic bit-flip error and logic phase-flip error, but also can correct the physical bit-flip error completely. We use cross-Kerr nonlinearity to construct quantum nondemolition detectors. Our distillation protocol for logic-qubit entanglement may be useful for the practical applications in quantum information, especially in long-distance quantum communication.
We study the entanglement generated by a weak cross-Kerr nonlinearity between two initial coherent states, one of which has an amplitude close to the single-photon level, while the other one is macroscopic. We show that strong micro-macro entanglement is possible for weak phase shifts by choosing the amplitude of the macroscopic beam sufficiently large. We analyze the effects of loss and discuss possible experimental demonstrations of the micro-macro entanglement based on homodyne tomography and on a new entanglement witness.
State measurement of a quantum harmonic oscillator is essential in quantum optics and quantum information processing. In a system of trapped ions, we experimentally demonstrate the projective measurement of the state of the ions motional mode via an effective cross-Kerr coupling to another motional mode. This coupling is induced by the intrinsic nonlinearity of the Coulomb interaction between the ions. We spectroscopically resolve the frequency shift of the motional sideband of the first mode due to presence of single phonons in the second mode and use it to reconstruct the phonon number distribution of the second mode.
Few-photon optomechanical effects are not only important physical evidences for understanding the radiation-pressure interaction between photons and mechanical oscillation, but also have wide potential applications in modern quantum technology. Here we study the few-photon optomechanical effects including photon blockade and generation of the Schr{o}dinger cat states under the assistance of a cross-Kerr interaction, which is an inherent interaction accompanied the optomechanical coupling in a generalized optomechanical system. By exactly diagonalizing the generalized optomechanical Hamiltonian and calculating its unitary evolution operator, we find the physical mechanism of the enhancement of photon blockade and single-photon mechanical displacement. The quantum properties in this generalized optomechanical system are studied by investigating the second-order correlation function of the cavity field and calculating the Wigner function and the probability distribution of the rotated quadrature operator for the mechanical mode. We also study the influence of the dissipations on the few-photon optomechanical effects.
Here we report on the production and tomography of genuinely entangled Greenberger-Horne-Zeilinger states with up to 10 qubits connecting to a bus resonator in a superconducting circuit, where the resonator-mediated qubit-qubit interactions are used to controllably entangle multiple qubits and to operate on different pairs of qubits in parallel. The resulting 10-qubit density matrix is unambiguously probed, with a fidelity of $0.668 pm 0.025$. Our results demonstrate the largest entanglement created so far in solid-state architectures, and pave the way to large-scale quantum computation.
A notorious problem in high-resolution biological electron microscopy is radiation damage to the specimen caused by probe electrons. Hence, acquisition of data with minimal number of electrons is of critical importance. Quantum approaches may represent the only way to improve the resolution in this context, but all proposed schemes to date demand delicate control of the electron beam in highly unconventional electron optics. Here we propose a scheme that involves a flux qubit based on a radio-frequency superconducting quantum interference device (rf-SQUID), inserted in essentially a conventional transmission electron microscope. The scheme significantly improves the prospect of realizing a quantum-enhanced electron microscope for radiation-sensitive specimens.