No Arabic abstract
We present a comparison of molecular clouds (MCs) from a simulation of supernova-driven interstellar medium (ISM) turbulence with real MCs from the Outer Galaxy Survey. The radiative transfer calculations to compute synthetic CO spectra are carried out assuming the CO relative abundance depends only on gas density, according to four different models. Synthetic MCs are selected above a threshold brightness temperature value, $T_{rm B,min}=1.4$ K, of the $J=1-0$ $^{12}$CO line, generating 16 synthetic catalogs (four different spatial resolutions and four CO abundance models), each containing up to several thousands MCs. The comparison with the observations focuses on the mass and size distributions and on the velocity-size and mass-size Larson relations. The mass and size distributions are found to be consistent with the observations, with no significant variations with spatial resolution or chemical model, except in the case of the unrealistic model with constant CO abundance. The velocity-size relation is slightly too steep for some of the models, while the mass-size relation is a bit too shallow for all models only at a spatial resolution $dxapprox 1$ pc. The normalizations of the Larson relations show a clear dependence on spatial resolution, for both the synthetic and the real MCs. The comparison of the velocity-size normalization suggests that the SN rate in the Perseus arm is approximately 70% or less of the rate adopted in the simulation. Overall, the realistic properties of the synthetic clouds confirm that supernova-driven turbulence can explain the origin and dynamics of MCs.
Turbulence is ubiquitous in molecular clouds (MCs), but its origin is still unclear because MCs are usually assumed to live longer than the turbulence dissipation time. Interstellar medium (ISM) turbulence is likely driven by SN explosions, but it has never been demonstrated that SN explosions can establish and maintain a turbulent cascade inside MCs consistent with the observations. In this work, we carry out a simulation of SN-driven turbulence in a volume of (250 pc)$^3$, specifically designed to test if SN driving alone can be responsible for the observed turbulence inside MCs. We find that SN driving establishes a velocity scaling consistent with the usual scaling laws of supersonic turbulence, suggesting that previous idealized simulations of MC turbulence, driven with a random, large-scale volume force, were correctly adopted as appropriate models for MC turbulence, despite the artificial driving. We also find that the same scaling laws extend to the interior of MCs, and that the velocity-size relation of the MCs selected from our simulation is consistent with that of MCs from the Outer-Galaxy Survey, the largest MC sample available. The mass-size relation and the mass and size probability distributions also compare successfully with those of the Outer Galaxy Survey. Finally, we show that MC turbulence is super-Alfv{e}nic with respect to both the mean and rms magnetic-field strength. We conclude that MC structure and dynamics are the natural result of SN-driven turbulence.
The compressibility of molecular cloud (MC) turbulence plays a crucial role in star formation models, because it controls the amplitude and distribution of density fluctuations. The relation between the compressive ratio (the ratio of powers in compressive and solenoidal motions) and the statistics of turbulence has been previously studied systematically only in idealized simulations with random external forces. In this work, we analyze a simulation of large-scale turbulence (250 pc) driven by supernova (SN) explosions that has been shown to yield realistic MC properties. We demonstrate that SN driving results in MC turbulence with a broad lognormal distribution of the compressive ratio, with a mean value $approx 0.3$, lower than the equilibrium value of $approx 0.5$ found in the inertial range of isothermal simulations with random solenoidal driving. We also find that the compressibility of the turbulence is not noticeably affected by gravity, nor are the mean cloud radial (expansion or contraction) and solid-body rotation velocities. Furthermore, the clouds follow a general relation between the rms density and the rms Mach number similar to that of supersonic isothermal turbulence, though with a large scatter, and their average gas density PDF is described well by a lognormal distribution, with the addition of a high-density power-law tail when self-gravity is included.
We present synthetic Hi and CO observations of a simulation of decaying turbulence in the thermally bistable neutral medium. We first present the simulation, with clouds initially consisting of clustered clumps. Self-gravity causes these clump clusters to form more homogeneous dense clouds. We apply a simple radiative transfer algorithm, and defining every cell with <Av> > 1 as molecular. We then produce maps of Hi, CO-free molecular gas, and CO, and investigate the following aspects: i) The spatial distribution of the warm, cold, and molecular gas, finding the well-known layered structure, with molecular gas surrounded by cold Hi, surrounded by warm Hi. ii) The velocity of the various components, with atomic gas generally flowing towards the molecular gas, and that this motion is reflected in the frequently observed bimodal shape of the Hi profiles. This conclusion is tentative, because we do not include feedback. iii) The production of Hi self-absorption (HISA) profiles, and the correlation of HISA with molecular gas. We test the suggestion of using the second derivative of the brightness temperature Hi profile to trace HISA and molecular gas, finding limitations. On a scale of ~parsecs, some agreement is obtained between this technique and actual HISA, as well as a correlation between HISA and N(mol). It quickly deteriorates towards sub-parsec scales. iv) The N-PDFs of the actual Hi gas and those recovered from the Hi line profiles, with the latter having a cutoff at column densities where the gas becomes optically thick, thus missing the contribution from the HISA-producing gas. We find that the power-law tail typical of gravitational contraction is only observed in the molecular gas, and that, before the power-law tail develops in the total gas density PDF, no CO is yet present, reinforcing the notion that gravitational contraction is needed to produce this component. (abridged)
We compute the star formation rate (SFR) in molecular clouds (MCs) that originate {it ab initio} in a new, higher-resolution simulation of supernova-driven turbulence. Because of the large number of well-resolved clouds with self-consistent boundary and initial conditions, we obtain a large range of cloud physical parameters with realistic statistical distributions, an unprecedented sample of star-forming regions to test SFR models and to interpret observational surveys. We confirm the dependence of the SFR per free-fall time, $SFR_{rm ff}$, on the virial parameter, $alpha_{rm vir}$, found in previous simulations, and compare a revised version of our turbulent fragmentation model with the numerical results. The dependences on Mach number, ${cal M}$, gas to magnetic pressure ratio, $beta$, and compressive to solenoidal power ratio, $chi$ at fixed $alpha_{rm vir}$ are not well constrained, because of random scatter due to time and cloud-to-cloud variations in $SFR_{rm ff}$. We find that $SFR_{rm ff}$ in MCs can take any value in the range $0 le SFR_{rm ff} lesssim 0.2$, and its probability distribution peaks at a value $SFR_{rm ff}approx 0.025$, consistent with observations. The values of $SFR_{rm ff}$ and the scatter in the $SFR_{rm ff}$--$alpha_{rm vir}$ relation are consistent with recent measurements in nearby MCs and in clouds near the Galactic center. Although not explicitly modeled by the theory, the scatter is consistent with the physical assumptions of our revised model and may also result in part from a lack of statistical equilibrium of the turbulence, due to the transient nature of MCs.
We present high-resolution (sub-parsec) observations of a giant molecular cloud in the nearest star-forming galaxy, the Large Magellanic Cloud. ALMA Band 6 observations trace the bulk of the molecular gas in $^{12}$CO(2-1) and high column density regions in $^{13}$CO(2-1). Our target is a quiescent cloud (PGCC G282.98-32.40, which we refer to as the Planck cold cloud or PCC) in the southern outskirts of the galaxy where star-formation activity is very low and largely confined to one location. We decompose the cloud into structures using a dendrogram and apply an identical analysis to matched-resolution cubes of the 30 Doradus molecular cloud (located near intense star formation) for comparison. Structures in the PCC exhibit roughly 10 times lower surface density and 5 times lower velocity dispersion than comparably sized structures in 30 Dor, underscoring the non-universality of molecular cloud properties. In both clouds, structures with relatively higher surface density lie closer to simple virial equilibrium, whereas lower surface density structures tend to exhibit super-virial line widths. In the PCC, relatively high line widths are found in the vicinity of an infrared source whose properties are consistent with a luminous young stellar object. More generally, we find that the smallest resolved structures (leaves) of the dendrogram span close to the full range of line widths observed across all scales. As a result, while the bulk of the kinetic energy is found on the largest scales, the small-scale energetics tend to be dominated by only a few structures, leading to substantial scatter in observed size-linewidth relationships.