No Arabic abstract
I show that a recently discovered star cluster near the center of the ultra-faint dwarf galaxy Eridanus II provides strong constraints on massive compact halo objects (MACHOs) of >~5 M_sun as the main component of dark matter. MACHO dark matter will dynamically heat the cluster, driving it to larger sizes and higher velocity dispersions until it dissolves into its host galaxy. The stars in compact ultra-faint dwarf galaxies themselves will be subject to the same dynamical heating; the survival of at least ten such galaxies places independent limits on MACHO dark matter of masses >~10 M_sun. Both Eri IIs cluster and the compact ultra-faint dwarfs are characterized by stellar masses of just a few thousand M_sun and half-light radii of 13 pc (for the cluster) and ~30 pc (for the ultra-faint dwarfs). These systems close the ~20--100 M_sun window of allowed MACHO dark matter and combine with existing constraints from microlensing, wide binaries, and disk kinematics to rule out dark matter composed entirely of MACHOs from ~10$^{-7}$ M_sun up to arbitrarily high masses.
The very large (100-1000) mass-to-light ratio applicable to the ultra-faint dwarf galaxies (UFDs) implies a high concentration of dark matter, thus rendering them ideal theatres for indirect signatures of dark matter. In this paper, we consider 14 recently discovered UFDs and study the electromagnetic radiation emanating from them over a wide range, from gamma ray down to radio frequencies. We analyze the Fermi-LAT data on high energy gamma rays and radio fluxes at the GMRT and VLA to obtain upper limits on annihilation cross section $langlesigma vrangle$ in a model independent way. We further discuss the sensitivity of the Square Kilometer Array radio telescope in probing the synchrotron radiation from the aforementioned UFDs. We also investigate the dependences of the said upper limits on the uncertainties in the determination of various astrophysical parameters.
Dwarf spheroidal galaxies are excellent systems to probe the nature of fermionic dark matter due to their high observed dark matter phase-space density. In this work, we review, revise and improve upon previous phase-space considerations to obtain lower bounds on the mass of fermionic dark matter particles. The refinement in the results compared to previous works is realised particularly due to a significantly improved Jeans analysis of the galaxies. We discuss two methods to obtain phase-space bounds on the dark matter mass, one model-independent bound based on Paulis principle, and the other derived from an application of Liouvilles theorem. As benchmark examples for the latter case, we derive constraints for thermally decoupled particles and (non-)resonantly produced sterile neutrinos. Using the Pauli principle, we report a model-independent lower bound of $m geq 0.18,mathrm{keV}$ at 68% CL and $m geq 0.13,mathrm{keV}$ at 95% CL. For relativistically decoupled thermal relics, this bound is strengthened to $m geq 0.59,mathrm{keV}$ at 68% CL and $m geq 0.41,mathrm{keV}$ at 95% CL, whilst for non-resonantly produced sterile neutrinos the constraint is $m geq 2.80,mathrm{keV}$ at 68% CL and $m geq 1.74,mathrm{keV}$ at 95% CL. Finally, the phase-space bounds on resonantly produced sterile neutrinos are compared with complementary limits from X-ray, Lyman-$alpha$ and Big Bang Nucleosynthesis observations.
Recent observations have been discovering new ultra-faint dwarf galaxies as small as $sim20~{rm pc}$ in half-light radius and $sim3~{rm km~s^{-1}}$ in line-of-sight velocity dispersion. In these galaxies, dynamical friction on a star against dark matter can be significant and alter their stellar density distribution. The effect can strongly depend on a central density profile of dark matter, i.e. cusp or core. In this study, I perform computations using a classical and a modern analytic formulae and $N$-body simulations to study how dynamical friction changes a stellar density profile and how different it is between cuspy and cored dark matter haloes. This study shows that, if a dark matter halo has a cusp, dynamical friction can cause shrivelling instability which results in emergence of a stellar cusp in the central region $simeq2~{rm pc}$. On the other hand, if it has a constant-density core, dynamical friction is significantly weaker and does not generate a stellar cusp even if the galaxy has the same line-of-sight velocity dispersion. In such a compact and low-mass galaxy, since the shrivelling instability by dynamical friction is inevitable if it has a dark matter cusp, absence of a stellar cusp implies that the galaxy has a dark-matter core. I expect that this could be used to diagnose a dark matter density profile in these compact ultra-faint dwarf galaxies.
Aims. We use stellar line-of-sight velocities to constrain the dark matter-density profile of Eridanus 2, an ultra-faint dwarf galaxy ($M_mathrm{V} = -7.1$, $M_* approx 9 times 10^4,M_odot$). We furthermore derive constraints on fundamental properties of self-interacting and fuzzy dark matter scenarios. Methods. We present new observations of Eridanus 2 from MUSE-Faint, a survey of ultra-faint dwarf galaxies with MUSE on the Very Large Telescope, and determine line-of-sight velocities for stars inside the half-light radius. Combined with literature data, we have 92 stellar tracers out to twice the half-light radius. We constrain models of cold dark matter, self-interacting dark matter, and fuzzy dark matter with these tracers, using CJAM and pyGravSphere for the dynamical analysis. Results. We find substantial evidence for cold dark matter over self-interacting dark matter and weak evidence for fuzzy dark matter over cold dark matter. We find a virial mass $M_{200} sim 10^8,M_odot$ and astrophysical factors $J(alpha_mathrm{c}^J) sim 10^{11},M_odot^2,mathrm{kpc}^{-5}$ and $D(alpha_mathrm{c}^D) sim 10^2$-$10^{2.5},M_odot,mathrm{kpc}^{-2}$. We do not resolve a core ($r_mathrm{c} < 47,mathrm{pc}$, 68-% level) or soliton ($r_mathrm{sol} < 7.2,mathrm{pc}$, 68-% level). These limits are equivalent to an effective self-interaction coefficient $fGamma < 2.2 times 10^{-29},mathrm{cm}^3,mathrm{s}^{-1},mathrm{eV}^{-1},c^2$ and a fuzzy-dark-matter particle mass $m_mathrm{a} > 4.0 times 10^{-20},mathrm{eV},c^{-2}$. The constraint on self-interaction is complementary to those from gamma-ray searches. The constraint on fuzzy-dark-matter particle mass is inconsistent with those obtained for larger dwarf galaxies, suggesting that the flattened density profiles of those galaxies are not caused by fuzzy dark matter. (Abridged)
Motivated by the stellar fossil record of Local Group (LG) dwarf galaxies, we show that the star-forming ancestors of the faintest ultra-faint dwarf galaxies (UFDs; ${rm M}_{rm V}$ $sim -2$ or ${rm M}_{star}$ $sim 10^{2}$ at $z=0$) had ultra-violet (UV) luminosities of ${rm M}_{rm UV}$ $sim -3$ to $-6$ during reionization ($zsim6-10$). The existence of such faint galaxies has substantial implications for early epochs of galaxy formation and reionization. If the faint-end slopes of the UV luminosity functions (UVLFs) during reionization are steep ($alphalesssim-2$) to ${rm M}_{rm UV}$ $sim -3$, then: (i) the ancestors of UFDs produced $>50$% of UV flux from galaxies; (ii) galaxies can maintain reionization with escape fractions that are $>$2 times lower than currently-adopted values; (iii) direct HST and JWST observations may detect only $sim10-50$% of the UV light from galaxies; (iv) the cosmic star formation history increases by $gtrsim4-6$ at $zgtrsim6$. Significant flux from UFDs, and resultant tensions with LG dwarf galaxy counts, are reduced if the high-redshift UVLF turns over. Independent of the UVLF shape, the existence of a large population of UFDs requires a non-zero luminosity function to ${rm M}_{rm UV}$ $sim -3$ during reionization.