Do you want to publish a course? Click here

New Constraints on the Mass of Fermionic Dark Matter from Dwarf Spheroidal Galaxies

170   0   0.0 ( 0 )
 Added by James Alvey
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Dwarf spheroidal galaxies are excellent systems to probe the nature of fermionic dark matter due to their high observed dark matter phase-space density. In this work, we review, revise and improve upon previous phase-space considerations to obtain lower bounds on the mass of fermionic dark matter particles. The refinement in the results compared to previous works is realised particularly due to a significantly improved Jeans analysis of the galaxies. We discuss two methods to obtain phase-space bounds on the dark matter mass, one model-independent bound based on Paulis principle, and the other derived from an application of Liouvilles theorem. As benchmark examples for the latter case, we derive constraints for thermally decoupled particles and (non-)resonantly produced sterile neutrinos. Using the Pauli principle, we report a model-independent lower bound of $m geq 0.18,mathrm{keV}$ at 68% CL and $m geq 0.13,mathrm{keV}$ at 95% CL. For relativistically decoupled thermal relics, this bound is strengthened to $m geq 0.59,mathrm{keV}$ at 68% CL and $m geq 0.41,mathrm{keV}$ at 95% CL, whilst for non-resonantly produced sterile neutrinos the constraint is $m geq 2.80,mathrm{keV}$ at 68% CL and $m geq 1.74,mathrm{keV}$ at 95% CL. Finally, the phase-space bounds on resonantly produced sterile neutrinos are compared with complementary limits from X-ray, Lyman-$alpha$ and Big Bang Nucleosynthesis observations.



rate research

Read More

We present a general, model-independent formalism for determining bounds on the production of photons in dwarf spheroidal galaxies via dark matter annihilation, applicable to any set of assumptions about dark matter particle physics or astrophysics. As an illustration, we analyze gamma-ray data from the Fermi Large Area Telescope to constrain a variety of nonstandard dark matter models, several of which have not previously been studied in the context of dwarf galaxy searches.
New and complimentary constraints are placed on the spin-independent interactions of dark matter with baryonic matter. Similar to the Earth and other planets, the Moon does not have any major internal heat source. We derive constraints by comparing the rate of energy deposit by dark matter annihilations in the Moon to 12 mW/m$^2$ as measured by the Apollo mission. For light dark matter of mass $mathcal{O}(10)$ GeV, we also examine the possibility of dark matter annihilations in the Moon limb. In this case, we place constraints by comparing the photon flux from such annihilations to that of the Fermi-LAT measurement of $10^{-4}$ MeV/cm$^2$s. This analysis excludes spin independent cross section $gtrsim 10^{-37}$ $rm{cm}^2$ for dark matter mass between 30 and 50 GeV.
We examine the ability for the Large Area Telescope (LAT) to constrain Minimal Supersymmetric Standard Model (MSSM) dark matter through a combined analysis of Milky Way dwarf spheroidal galaxies. We examine the Lightest Supersymmetric Particles (LSPs) for a set of ~71k experimentally valid supersymmetric models derived from the phenomenological-MSSM (pMSSM). We find that none of these models can be excluded at 95% confidence by the current analysis; nevertheless, many lie within the predicted reach of future LAT analyses. With two years of data, we find that the LAT is currently most sensitive to light LSPs (m_LSP < 50 GeV) annihilating into tau-pairs and heavier LSPs annihilating into b-bbar. Additionally, we find that future LAT analyses will be able to probe some LSPs that form a sub-dominant component of dark matter. We directly compare the LAT results to direct detection experiments and show the complementarity of these search methods.
It has been suggested that the internal dynamics of dwarf spheroidal galaxies (dSphs) can be used to test whether or not ultralight axions with $m_asim 10^{-22}text{eV}$ are a preferred dark matter candidate. However, comparisons to theoretical predictions tend to be inconclusive for the simple reason that while most cosmological models consider only dark matter, one observes only baryons. Here we use realistic kinematic mock data catalogs of Milky Way dSphs to show that the mass-anisotropy degeneracy in the Jeans equations leads to biased bounds on the axion mass in galaxies with unknown dark matter halo profiles. In galaxies with multiple chemodynamical components this bias can be partly removed by modelling the mass enclosed within each subpopulation. However, analysis of the mock data reveals that the least-biased constraints on the axion mass result from fitting the luminosity-averaged velocity dispersion of the individual chemodynamical components directly. Applying our analysis to two dSphs with reported stellar subcomponents, Fornax and Sculptor, and assuming that the halo profile has not been acted on by baryons, yields core radii $r_{c}>1.5$ kpc and $r_c> 1.2$ kpc respectively, and $m_a<0.4times 10^{-22}text{eV}$ at 97.5% confidence. These bounds are in tension with the number of observed satellites derived from simple (but conservative) estimates of the subhalo mass function in Milky Way-like galaxies. We discuss how baryonic feedback might affect our results, and the impact of such a small axion mass on the growth of structures in the Universe.
Starting from the evidence that dark matter indeed exists and permeates the entire cosmos, various bounds on its properties can be estimated. Beginning with the cosmic microwave background and large scale structure, we summarize bounds on the ultralight bosonic dark matter (UBDM) mass and cosmic density. These bounds are extended to larger masses by considering galaxy formation and evolution, and the phenomenon of black hole superradiance. We then discuss the formation of different classes of UBDM compact objects including solitons/axion stars and miniclusters. Next, we consider astrophysical constraints on the couplings of UBDM to Standard Model particles, from stellar cooling (production of UBDM) and indirect searches (decays or conversion of UBDM). Throughout, there are short discussions of hints and opportunities in searching for UBDM in each area.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا