Do you want to publish a course? Click here

Tellurene-a monolayer of tellurium from first-principles prediction

72   0   0.0 ( 0 )
 Added by Zhili Zhu
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

A two dimensional (2D) Group-VI Te monolayer, tellurene, is predicted by using the first-principles calculations, which consists of planner four-membered and chair-like six-membered rings arranged alternately in a 2D lattice. The phonon spectra calculations, combined with ab initio molecular dynamics (MD) simulations, demonstrate that tellurene is kinetically very stable. The tellurene shows a desirable direct band gap of 1.04 eV and its band structure can be effectively tuned by strain. The effective mass calculations imply that tellurene should also exhibit a relatively high carrier mobility, e.g. compared with MoS2. The significant direct band gap and the high carrier mobility imply that tellurene is a very promising candidate for a new generation of nanoelectronic devices.



rate research

Read More

First-principles calculations within density functional theory (DFT) have been carried out to investigate the adsorption of various gas molecules including CO, CO2, NH3, NO and NO2 on MoS2 monolayer in order to fully exploit the gas sensing capabilities of MoS2. By including van der Waals (vdW) interactions between gas molecules and MoS2, we find that only NO and NO2 can bind strongly to MoS2 sheet with large adsorption energies, which is in line with experimental observations. The charge transfer and the variation of electronic structures are discussed in view of the density of states and molecular orbitals of the gas molecules. Our results thus provide a theoretical basis for the potential applications of MoS2 monolayer in gas sensing and give an explanation for recent experimental findings.
Recent discovery of topological superconductors (TSCs) has sparked enormous interest. Realization of TSC requires a delicate tuning of multiple microscopic parameters, which remains a great challenge. Here, we develop a first-principles approach to quantify realistic conditions of TSC by solving self-consistently Bogoliubov-de Gennes equation based on Wannier function construction of band structure, in presence of Rashba spin-orbit coupling, Zeeman splitting and electron-phonon coupling. We further demonstrate the power of this new method by predicting the Mn-doped GeTe (Ge$_{1-x}$Mn$_x$Te) monolayer - a well-known dilute magnetic semiconductor showing superconductivity under hole doping - to be a Class D TSC with Chern number of -1 and chiral Majorana edge modes. By constructing a first-principles phase diagram in the parameter space of temperature and Mn concentration, we propose the TSC phase can be induced at a lower-limit transition temperature of ~40 mK and the Mn concentration of $x$~0.015%. Our approach can be generally applied to TSCs with a phonon-mediated pairing, providing useful guidance for future experiments.
104 - Jing Shang , Chun Li , Aijun Du 2019
Two-dimensional (2D) multiferroics exhibit cross-control capacity between magnetic and electric responses in reduced spatial domain, making them well suited for next-generation nanoscale devices; however, progress has been slow in developing materials with required characteristic properties. Here we identify by first-principles calculations robust 2D multiferroic behaviors in decorated Fe2O3 monolayer, showcasing N@Fe2O3 as a prototypical case, where ferroelectricity and ferromagnetism stem from the same origin, namely Fe d-orbit splitting induced by the Jahn-Teller distortion and associated crystal field changes. The resulting ferromagnetic and ferroelectric polarization can be effectively reversed and regulated by applied electric field or strain, offering efficient functionality. These findings establish strong materials phenomena and elucidate underlying physics mechanism in a family of truly 2D multiferroics that are highly promising for advanced device applications.
Using first-principles calculations we predict that $mathrm{TiRhAs}$, a previously synthesized compound, is a Dirac nodal line (DNL) semimetal. The DNL in this compound is found to be protected both by the combination of inversion and time-reversal symmetry, and by a reflection symmetry, in the absence of spin-orbit coupling (SOC). Our calculations show that band velocities associated with the nodal line have a high degree of directional anisotropy, with in-plane velocities $v_perp$ perpendicular to the nodal line between $1.2-2.8times10^5$ m/s. The crossings along the DNL are further found to exhibit a prominent and position-dependent tilt along directions perpendicular to the nodal line. We calculate $mathbb{Z}_2$ indices based on parity eigenvalues at time-reversal invariant momenta and show that $mathrm{TiRhAs}$ is topological. A tight-binding model fit from our first-principles calculations demonstrates the existence of two-dimensional drumhead surface states on the surface Brillouin zone. Based on the small gapping of the DNL upon inclusion of SOC and the clean Fermi surface free from trivial bands, $mathrm{TiRhAs}$ is a promising candidate for further studies of the properties of topological semimetals.
A novel stable crystallographic structure is discovered in a variety of ABO3, ABF3 and A2O3 compounds (including materials of geological relevance, prototypes of multiferroics, exhibiting strong spin-orbit effects, etc...), via the use of first principles. This novel structure appears under hydrostatic pressure, and is the first post-post-perovskite phase to be found. It provides a successful solution to experimental puzzles in important systems, and is characterized by one-dimensional chains linked by group of two via edge-sharing oxygen/fluorine octahedra. Such unprecedented organization automatically results in anisotropic elastic properties and new magnetic arrangements. Depending on the system of choice, this post-post-perovskite structure also possesses electronic band gaps ranging from zero to ~ 10 eV being direct or indirect in nature, which emphasizes its universality and its potential to have striking, e.g., electrical or transport phenomena.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا