Do you want to publish a course? Click here

Prospects for annihilating Dark Matter towards Milky Ways dwarf galaxies by the Cherenkov Telescope Array

133   0   0.0 ( 0 )
 Added by Paolo Panci
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We derive the Cherenkov Telescope Array (CTA) sensitivity to dark matter (DM) annihilation in several primary channels, over a broad range of DM masses. These sensitivities are estimated when CTA is pointed towards a large sample of Milky Ways dwarf spheroidal galaxies (dSphs) with promising $J$-factors and small statistical uncertainties. This analysis neglects systematic uncertainties, which we estimate at the level of at least 1 dex. We also present sensitivities on the annihilation cross section from a combined analysis of 4 dSphs. We assess the CTA sensitivity by: $i)$ using, for each dSph, a recent determination of the $J$-factor and its statistical error; $ii)$ considering the most up-to-date cosmic ray background; and $iii)$ including both spatial and spectral terms in the likelihood analysis. We find that a joint spectral and spatial analysis improves the CTA sensitivity, in particular for primary channels with sharp features in the $gamma$-ray energy spectrum and for dSphs with steep $J$-factor profiles, as deduced from the internal kinematics. The greatest sensitivities are obtained for observations of Ursa Minor among the classical dSphs and of Ursa Major II for ultra-faint dSphs.



rate research

Read More

We compute the sensitivity to dark matter annihilations for the forthcoming large Cherenkov Telescope Array (CTA) in several primary channels and over a range of dark matter masses from 30 GeV up to 80 TeV. For all channels, we include inverse Compton scattering of e$^pm$ by dark matter annihilations on the ambient photon background, which yields substantial contributions to the overall gamma-ray flux. We improve the analysis over previous work by: i) implementing a spectral and morphological analysis of the gamma-ray emission; ii) taking into account the most up-to-date cosmic ray background obtained from a full CTA Monte Carlo simulation and a description of the diffuse astrophysical emission; and iii) including the systematic uncertainties in the rich observational CTA datasets. We find that our spectral and morphological analysis improves the CTA sensitivity by roughly a factor 2. For the hadronic channels, CTA will be able to probe thermal dark matter candidates over a broad range of masses if the systematic uncertainties in the datasets will be controlled better than the percent level. For the leptonic modes, the CTA sensitivity will be well below the thermal value of the annihilation cross-section. In this case, even with larger systematics, thermal dark matter candidates up to masses of a few TeV will be easily studied.
Dwarf galaxies are widely believed to be among the best targets for indirect dark matter searches using high-energy gamma rays; and indeed gamma-ray emission from these objects has long been a subject of detailed study for ground-based atmospheric Cherenkov telescopes. Here, we update current exclusion limits obtained on the closest dwarf, the Sagittarius dwarf galaxy, in light of recent realistic dark matter halo models. The constraints on the velocity-weighted annihilation cross section of the dark matter particle are of a few 10$^{-23}$ cm$^{3}$s$^{-1}$ in the TeV energy range for a 50 h exposure. The limits are extrapolated to the sensitivities of future Cherenkov Telescope Arrays. For 200 h of observation time, the sensitivity at 95% C.L. reaches 10$^{-25}$ cm$^{3}$s$^{-1}$. Possible astrophysical backgrounds from gamma-ray sources dissembled in Sagittarius dwarf are studied. It is shown that with long-enough observation times, gamma-ray background from millisecond pulsars in a globular cluster contained within Sagittarius dwarf may limit the sensitivity to dark matter annihilations.
264 - T. Hassan , S. Bonnefoy , M. Lopez 2012
In the last few years, the Fermi-LAT telescope has discovered over a 100 pulsars at energies above 100 MeV, increasing the number of known gamma-ray pulsars by an order of magnitude. In parallel, imaging Cherenkov telescopes, such as MAGIC and VERITAS, have detected for the first time VHE pulsed gamma-rays from the Crab pulsar. Such detections have revealed that the Crab VHE spectrum follows a power-law up to at least 400 GeV, challenging most theoretical models, and opening wide possibilities of detecting more pulsars from the ground with the future Cherenkov Telescope Array (CTA). In this contribution, we study the capabilities of CTA for detecting Fermi pulsars. For this, we extrapolate their spectra with Crab-like power-law tails in the VHE range, as suggested by the latest MAGIC and VERITAS results.
132 - F. Iocco , M. Meyer , M. Doro 2021
Astrophysical observations provide strong evidence that more than 80% of all matter in the Universe is in the form of dark matter (DM). Two leading candidates of particles beyond the Standard Model that could constitute all or a fraction of the DM content are the so-called Weakly Interacting Massive Particles (WIMPs) and Axion-Like Particles (ALPs). The upcoming Cherenkov Telescope Array, which will observe gamma rays between 20 GeV and 300 TeV with unprecedented sensitivity, will have unique capabilities to search for these DM candidates. A particularly promising target for WIMP searches is the Galactic Center. WIMPs with annihilation cross sections correctly producing the DM relic density will be detectable with CTA, assuming an Einasto-like density profile and WIMP masses between 200 GeV and 10 TeV. Regarding new physics beyond DM, CTA observations will also enable tests of fundamental symmetries of nature such as Lorentz invariance.
The Cherenkov Telescope Array (CTA) is a project for a next-generation observatory for very high energy (GeV-TeV) ground-based gamma-ray astronomy, currently in its design phase, and foreseen to be operative a few years from now. Several tens of telescopes of 2-3 different sizes, distributed over a large area, will allow for a sensitivity about a factor 10 better than current instruments such as H.E.S.S, MAGIC and VERITAS, an energy coverage from a few tens of GeV to several tens of TeV, and a field of view of up to 10 deg. In the following study, we investigate the prospects for CTA to study several science questions that influence our current knowledge of fundamental physics. Based on conservative assumptions for the performance of the different CTA telescope configurations, we employ a Monte Carlo based approach to evaluate the prospects for detection. First, we discuss CTA prospects for cold dark matter searches, following different observational strategies: in dwarf satellite galaxies of the Milky Way, in the region close to the Galactic Centre, and in clusters of galaxies. The possible search for spatial signatures, facilitated by the larger field of view of CTA, is also discussed. Next we consider searches for axion-like particles which, besides being possible candidates for dark matter may also explain the unexpectedly low absorption by extragalactic background light of gamma rays from very distant blazars. Simulated light-curves of flaring sources are also used to determine the sensitivity to violations of Lorentz Invariance by detection of the possible delay between the arrival times of photons at different energies. Finally, we mention searches for other exotic physics with CTA.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا