No Arabic abstract
Electrons/positrons produced in a pulsar magnetosphere emit synchrotron radiation, which is widely believed as the origin of the non-thermal X-ray emission detected from pulsars. Particles are produced by curvature photons emitted from accelerated particles in the magnetosphere. These curvature photons are detected as pulsed $gamma$-ray emissions from pulsars with age $lesssim10^6$ yr. Using $gamma$-ray observations and analytical model, we impose severe constraints on the synchrotron radiation as a mechanism of the non-thermal X-ray emission. In most middle-aged pulsars ($sim10^5-10^6$ yr) which photon-photon pair production is less efficient in their magnetosphere, we find that the synchrotron radiation model is difficult to explain the observed non-thermal X-ray emission.
We present analytical and numerical studies of models of supernova-remnant (SNR) blast waves expanding into uniform media and interacting with a denser cavity wall, in one spatial dimension. We predict the nonthermal emission from such blast waves: synchrotron emission at radio and X-ray energies, and bremsstrahlung, inverse-Compton emission (from cosmic-microwave-background seed photons, ICCMB), and emission from the decay of $pi^0$ mesons produced in inelastic collisions between accelerated ions and thermal gas, at GeV and TeV energies. Accelerated particle spectra are assumed to be power-laws with exponential cutoffs at energies limited by the remnant age or (for electrons, if lower) by radiative losses. We compare the results with those from homogeneous (one-zone) models. Such models give fair representations of the 1-D results for uniform media, but cavity-wall interactions produce effects for which one-zone models are inadequate. We study the time evolution of SNR morphology and emission with time. Strong morphological differences exist between ICCMB and $pi^0$-decay emission, at some stages, the TeV emission can be dominated by the former and the GeV by the latter, resulting in strong energy-dependence of morphology. Integrated gamma-ray spectra show apparent power-laws of slopes that vary with time, but do not indicate the energy distribution of a single population of particles. As observational capabilities at GeV and TeV energies improve, spatial inhomogeneity in SNRs will need to be accounted for.
We used the 10.4m Gran Telescopio Canarias to search for the optical counterparts to four isolated $gamma$-ray pulsars, all detected in the X-rays by either xmm or chan but not yet in the optical. Three of them are middle-aged pulsars -- PSR, J1846+0919 (0.36 Myr), PSR, J2055+2539 (1.2 Myr), PSR, J2043+2740 (1.2 Myr) -- and one, PSR, J1907+0602, is a young pulsar (19.5 kyr). For both PSR, J1907+0602 and PSR, J2055+2539 we found one object close to the pulsar position. However, in both cases such an object cannot be a viable candidate counterpart to the pulsar. For PSR, J1907+0602, because it would imply an anomalously red spectrum for the pulsar and for PSR, J2055+2539 because the pulsar would be unrealistically bright ($r=20.34pm0.04$) for the assumed distance and interstellar extinction. For PSR, J1846+0919, we found no object sufficiently close to the expected position to claim a possible association, whereas for PSR, J2043+2740 we confirm our previous findings that the object nearest to the pulsar position is an unrelated field star. We used our brightness limits ($g approx 27$), the first obtained with a large-aperture telescope for both PSR, J1846+0919 and PSR, J2055+2539, to constrain the optical emission properties of these pulsars and investigate the presence of spectral turnovers at low energies in their multi-wavelength spectra.
Chandra and XMM-Newton resolved extremely long tails behind two middle-aged pulsars, J1509-5850 and J1740+1000. The tail of PSR J1509-5850 is discernible up to 5.6 from the pulsar (6.5 pc at a distance of 4 kpc), with a flux of 2*10^{-13} erg s^{-1} cm^{-2} in 0.5-8 keV. The tail spectrum fits an absorbed power-law (PL) model with the photon index of 2.3pm0.2, corresponding to the 0.5-8 keV luminosity of 1*10^{33} ergs s^{-1}, for n_H= 2.1*10^{22} cm^{-2}. The tail of PSR J1740+1000 is firmly detected up to 5 (2 pc at a 1.4 kpc distance), with a flux of 6*10^{-14} ergs cm^{-2} s^{-1} in 0.4-10 keV. The PL fit yields photon index of 1.4-1.5 and n_H=1*10^{21} cm^{-2}. The large extent of the tails suggests that the bulk flow in the tails starts as mildly relativistic downstream of the termination shock, and then gradually decelerates. Within the observed extent of the J1509-5850 tail, the average flow speed exceeds 5,000 km s^{-1}, and the equipartition magnetic field is a few times 10^{-5} G. For the J1740+1000 tail, the equipartition field is a factor of a few lower. The harder spectrum of the J1740+1000 tail implies either less efficient cooling or a harder spectrum of injected electrons. For the high-latitude PSR J1740+1000, the orientation of the tail on the sky shows that the pulsar is moving toward the Galactic plane, which means that it was born from a halo-star progenitor. The comparison between the J1509 and J1740 tails and the X-ray tails of other pulsars shows that the X-ray radiation efficiency correlates poorly with the pulsar spin-down luminosity or age. The X-ray efficiencies of the ram-pressure confined pulsar wind nebulae (PWNe) are systematically higher than those of PWNe around slowly moving pulsars with similar spin-down parameters.
Millisecond Pulsars are second most abundant source population discovered by the Fermi-LAT. They might contribute non-negligibly to the diffuse emission measured at high latitudes by Fermi-LAT, the IDGRB. Gamma-ray sources also contribute to the anisotropy of the IDGRB measured on small scales by Fermi-LAT. We aim to assess the contribution of the unresolved counterpart of the detected MSPs population to the IDGRB and the maximal fraction of the measured anisotropy produced by this source class. We model the MSPs spatial distribution in the Galaxy and the gamma-ray emission parameters by considering radio and gamma-ray observational constraints. By simulating a large number of MSPs populations, we compute the average diffuse emission and the anisotropy 1-sigma upper limit. The emission from unresolved MSPs at 2 GeV, where the peak of the spectrum is located, is at most 0.9% of the measured IDGRB above 10 degrees in latitude. The 1-sigma upper limit on the angular power for unresolved MSP sources turns out to be about a factor of 60 smaller than Fermi-LAT measurements above 30 degrees. Our results indicate that this galactic source class represents a negligible contributor to the high-latitude gamma-ray sky and confirm that most of the intensity and geometrical properties of the measured diffuse emission are imputable to other extragalactic source classes. Nevertheless, given the MSP distribution, we expect them to contribute significantly to the gamma-ray diffuse emission at low latitudes. Since, along the galactic disk, the population of young Pulsars overcomes in number the one of MSPs, we compute the gamma-ray emission from the whole population of unresolved Pulsars in two low-latitude regions: the inner Galaxy and the galactic center.
Radio pulsars are often used as clocks in a wide variety of experiments. Imperfections in the clock, known as timing noise, have the potential to reduce the significance of, or even thwart e.g. the attempt to find a stochastic gravitational wave (GW) background. We measure the timing noise in a group of 129 mostly middle-aged pulsars (i.e. characterstic ages near 1~Myr) observed with the Parkes radio telescope on a monthly basis since 2014. We examine four different metrics for timing noise, but it remains unclear which, if any, provides the best determination. In spite of this, it is evident that these pulsars have significantly less timing noise than their younger counterparts, but significantly more than the (much older) millisecond pulsars (MSPs). As with previous authors, we find a strong correlation between timing noise and the pulsar spin-down rate, $dot{ u}$. However, for a given $dot{ u}$ there is a spread of about a factor 30 in the strength of the timing noise likely indicating that nuclear conditions in the interior of the stars differs between objects. We briefly comment on the implications for GW detection through pulsar timing arrays as the level of timing noise in MSPs may be less than predicted.