Do you want to publish a course? Click here

Routes towards the experimental observation of the large fluctuations due to chaos assisted tunneling effects with cold atoms

112   0   0.0 ( 0 )
 Added by Remy Dubertrand
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the presence of a complex classical dynamics associated with a mixed phase space, a quantum wave function can tunnel between two stable islands through the chaotic sea, an effect that has no classical counterpart. This phenomenon, referred to as chaos assisted tunneling, is characterized by large fluctuations of the tunneling rate when a parameter is varied. To date the full extent of this effect as well as the associated statistical distribution have never been observed in a quantum system. Here we analyze the possibility of characterizing these effects accurately in a cold atom experiment. Using realistic values of the parameters of an experimental setup, we examine through analytical estimates and extensive numerical simulations a specific system that can be implemented with cold atoms, the atomic modulated pendulum. We assess the efficiency of three possible routes to observe in detail chaos assisted tunneling properties. Our main conclusion is that due to the fragility of the symmetry between positive and negative momenta as a function of quasimomentum, it is very challenging to use tunneling between classical islands centered on fixed points with opposite momentum. We show that it is more promising to use islands symmetric in position space, and characterize the regime where it could be done. The proposed experiment could be realized with current state-of-the-art technology.



rate research

Read More

The experimental realisation of large scale many-body systems has seen immense progress in recent years, rendering full tomography tools for state identification inefficient, especially for continuous systems. In order to work with these emerging physical platforms, new technologies for state identification are required. In this work, we present first steps towards efficient experimental quantum field tomography. We employ our procedure to capture ultracold atomic systems using atom chips, a setup that allows for the quantum simulation of static and dynamical properties of interacting quantum fields. Our procedure is based on cMPS, the continuous analogues of matrix product states (MPS), ubiquitous in condensed-matter theory. These states naturally incorporate the locality present in realistic physical settings and are thus prime candidates for describing the physics of locally interacting quantum fields. The reconstruction procedure is based on two- and four-point correlation functions, from which we predict higher-order correlation functions, thus validating our reconstruction for the experimental situation at hand. We apply our procedure to quenched prethermalisation experiments for quasi-condensates. In this setting, we can use the quality of our tomographic reconstruction as a probe for the non-equilibrium nature of the involved physical processes. We discuss the potential of such methods in the context of partial verification of analogue quantum simulators.
Long-range interactions between cold Rydberg atoms, which are used in many important applications, can be enhanced using Forster resonances between collective many-body states controlled by an external electric field. Here we report on the first experimental observation of highly-resolved radio-frequency-assisted Forster resonances in a few cold Rb Rydberg atoms. We also observed radio-frequency-induced Forster resonances which cannot be tuned by a dc electric field. They imply an efficient transition from van der Waals to resonant dipole-dipole interaction due to Floquet sidebands of Rydberg levels appearing in the rf-field. This method can be applied to enhance the interactions of almost arbitrary Rydberg atoms with large principal quantum numbers.
We present the first experimental observation of resonance-assisted tunneling, a wave phenomenon, where regular-to-chaotic tunneling is strongly enhanced by the presence of a classical nonlinear resonance chain. For this we use a microwave cavity made of oxygen free copper with the shape of a desymmetrized cosine billiard designed with a large nonlinear resonance chain in the regular region. It is opened in a region, where only chaotic dynamics takes place, such that the tunneling rate of a regular mode to the chaotic region increases the line width of the mode. Resonance-assisted tunneling is demonstrated by (i) a parametric variation and (ii) the characteristic plateau and peak structure towards the semiclassical limit.
We experimentally study the influence of dissipation on the driven Dicke quantum phase transition, realized by coupling external degrees of freedom of a Bose-Einstein condensate to the light field of a high-finesse optical cavity. The cavity provides a natural dissipation channel, which gives rise to vacuum-induced fluctuations and allows us to observe density fluctuations of the gas in real-time. We monitor the divergence of these fluctuations over two orders of magnitude while approaching the phase transition and observe a behavior which significantly deviates from that expected for a closed system. A correlation analysis of the fluctuations reveals the diverging time scale of the atomic dynamics and allows us to extract a damping rate for the external degree of freedom of the atoms. We find good agreement with our theoretical model including both dissipation via the cavity field and via the atomic field. Utilizing a dissipation channel to non-destructively gain information about a quantum many-body system provides a unique path to study the physics of driven-dissipative systems.
We study the interplay between the dynamics of a Bose-Einstein condensate in a double-well potential and that of an optical cavity mode. The cavity field is superimposed to the double-well potential and affects the atomic tunneling processes. The cavity field is driven by a laser red detuned from the bare cavity resonance; the dynamically changing spatial distribution of the atoms can shift the cavity in and out of resonance. At resonance the photon number is hugely enhanced and the atomic tunneling becomes amplified. The Josephson junction equations are revisited and the phase diagram is calculated. We find new solutions with finite imbalance and at the same time a lack of self-trapping solutions due to the emergence of a new separatrix resulting from enhanced tunneling.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا