Do you want to publish a course? Click here

Controlling the interactions of a few cold Rb Rydberg atoms by radiofrequency-assisted Forster resonances

118   0   0.0 ( 0 )
 Added by Igor Ryabtsev
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Long-range interactions between cold Rydberg atoms, which are used in many important applications, can be enhanced using Forster resonances between collective many-body states controlled by an external electric field. Here we report on the first experimental observation of highly-resolved radio-frequency-assisted Forster resonances in a few cold Rb Rydberg atoms. We also observed radio-frequency-induced Forster resonances which cannot be tuned by a dc electric field. They imply an efficient transition from van der Waals to resonant dipole-dipole interaction due to Floquet sidebands of Rydberg levels appearing in the rf-field. This method can be applied to enhance the interactions of almost arbitrary Rydberg atoms with large principal quantum numbers.



rate research

Read More

High-fidelity entangled Bell states are of great interest in quantum physics. Entanglement of ultracold neutral atoms in two spatially separated optical dipole traps is promising for implementation of quantum computing and quantum simulation and for investigation of Bell states of material objects. We propose a new method to entangle two atoms via long-range Rydberg-Rydberg interaction. Alternatively to previous approaches, based on Rydberg blockade, we consider radiofrequency-assisted Stark-tuned F{o}rster resonances in Rb Rydberg atoms. To reduce the sensitivity of the fidelity of Bell states to the fluctuations of interatomic distance, we propose to use the double adiabatic passage across the radiofrequency-assisted Stark-tuned F{o}rster resonances, which results in a deterministic phase shift of the two-atom state.
The atom-based traceable standard for microwave electrometry shows promising advantages by enabling stable and uniform measurement. Here we theoretically propose and then experimentally realize an alternative direct International System of Units (SI)-traceable and self-calibrated method for measuring a microwave electric field strength based on electromagnetically induced absorption (EIA) in cold Rydberg atoms. Comparing with the method of electromagnetically induced transparency, we show that the equivalence relation between microwave Rabi frequency and Autler-Townes splitting is more valid and is even more robust against the experimental parameters in the EIAs linear region. Furthermore, a narrower linewidth of cold Rydberg EIA enables us to realize a direct SI-traceable microwave-electric-field measurement as small as $sim$100 $mumathrm{!V} mathrm{cm}^{!-!1}$.
Experiments on the spectroscopy of the Forster resonance Rb(37P)+Rb(37P) -> Rb(37S)+Rb(38S) and microwave transitions nP -> nS, nD between Rydberg states of cold Rb atoms in a magneto-optical trap have been performed. Under ordinary conditions, all spectra exhibited a 2-3 MHz line width independently of the interaction time of atoms with each other or with microwave radiation, although the ultimate resonance width should be defined by the inverse interaction time. Analysis of the experimental conditions has shown that the main source of the line broadening was the inhomogeneous electric field of cold photoions appeared at the excitation of initial Rydberg nP states by broadband pulsed laser radiation. Using an additional pulse of the electric field, which rapidly removed the photoions after the laser pulse, lead to a substantial narrowing of the microwave and Forster resonances. An analysis of various sources of the line broadening in cold Rydberg atoms has been conducted.
We study coherent excitation hopping in a spin chain realized using highly excited individually addressable Rydberg atoms. The dynamics are fully described in terms of an XY spin Hamiltonian with a long range resonant dipole-dipole coupling that scales as the inverse third power of the lattice spacing, $C_3/R^3$. The experimental data demonstrate the importance of next neighbor interactions which are manifest as revivals in the excitation dynamics. The results suggest that arrays of Rydberg atoms are ideally suited to large scale, high-fidelity quantum simulation of spin dynamics.
155 - O. Morsch , I. Lesanovsky 2018
In the last twenty years, Rydberg atoms have become a versatile and much studied system for implementing quantum many-body systems in the framework of quantum computation and quantum simulation. However, even in the absence of coherent evolution Rydberg systems exhibit interesting and non-trivial many-body phenomena such as kinetic constraints and non-equilibrium phase transitions that are relevant in a number of research fields. Here we review our recent work on such systems, where dissipation leads to incoherent dynamics and also to population decay. We show that those two effects, together with the strong interactions between Rydberg atoms, give rise to a number of intriguing phenomena that make cold Rydberg atoms an attractive test-bed for classical many-body processes and quantum generalizations thereof.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا