Do you want to publish a course? Click here

Relationship Queries on Large graphs using Pregel

80   0   0.0 ( 0 )
 Added by Puneet Agarwal
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Large-scale graph-structured data arising from social networks, databases, knowledge bases, web graphs, etc. is now available for analysis and mining. Graph-mining often involves relationship queries, which seek a ranked list of interesting interconnections among a given set of entities, corresponding to nodes in the graph. While relationship queries have been studied for many years, using various terminologies, e.g., keyword-search, Steiner-tree in a graph etc., the solutions proposed in the literature so far have not focused on scaling relationship queries to large graphs having billions of nodes and edges, such are now publicly available in the form of linked-open-data. In this paper, we present an algorithm for distributed keyword search (DKS) on large graphs, based on the graph-parallel computing paradigm Pregel. We also present an analytical proof that our algorithm produces an optimally ranked list of answers if run to completion. Even if terminated early, our algorithm produces approximate answers along with bounds. We describe an optimized implementation of our DKS algorithm along with time-complexity analysis. Finally, we report and analyze experiments using an implementation of DKS on Giraph the graph-parallel computing framework based on Pregel, and demonstrate that we can efficiently process relationship queries on large-scale subsets of linked-open-data.



rate research

Read More

Reachability query is a fundamental problem on graphs, which has been extensively studied in academia and industry. Since graphs are subject to frequent updates in many applications, it is essential to support efficient graph updates while offering good performance in reachability queries. Existing solutions compress the original graph with the Directed Acyclic Graph (DAG) and propose efficient query processing and index update techniques. However, they focus on optimizing the scenarios where the Strong Connected Components(SCCs) remain unchanged and have overlooked the prohibitively high cost of the DAG maintenance when SCCs are updated. In this paper, we propose DBL, an efficient DAG-free index to support the reachability query on dynamic graphs with insertion-only updates. DBL builds on two complementary indexes: Dynamic Landmark (DL) label and Bidirectional Leaf (BL) label. The former leverages landmark nodes to quickly determine reachable pairs whereas the latter prunes unreachable pairs by indexing the leaf nodes in the graph. We evaluate DBL against the state-of-the-art approaches on dynamic reachability index with extensive experiments on real-world datasets. The results have demonstrated that DBL achieves orders of magnitude speedup in terms of index update, while still producing competitive query efficiency.
Acting on time-critical events by processing ever growing social media or news streams is a major technical challenge. Many of these data sources can be modeled as multi-relational graphs. Continuous queries or techniques to search for rare events that typically arise in monitoring applications have been studied extensively for relational databases. This work is dedicated to answer the question that emerges naturally: how can we efficiently execute a continuous query on a dynamic graph? This paper presents an exact subgraph search algorithm that exploits the temporal characteristics of representative queries for online news or social media monitoring. The algorithm is based on a novel data structure called the Subgraph Join Tree (SJ-Tree) that leverages the structural and semantic characteristics of the underlying multi-relational graph. The paper concludes with extensive experimentation on several real-world datasets that demonstrates the validity of this approach.
Explaining why an answer is in the result of a query or why it is missing from the result is important for many applications including auditing, debugging data and queries, and answering hypothetical questions about data. Both types of questions, i.e., why and why-not provenance, have been studied extensively. In this work, we present the first practical approach for answering such questions for queries with negation (first-order queries). Our approach is based on a rewriting of Datalog rules (called firing rules) that captures successful rule derivations within the context of a Datalog query. We extend this rewriting to support negation and to capture failed derivations that explain missing answers. Given a (why or why-not) provenance question, we compute an explanation, i.e., the part of the provenance that is relevant to answer the question. We introduce optimizations that prune parts of a provenance graph early on if we can determine that they will not be part of the explanation for a given question. We present an implementation that runs on top of a relational database using SQL to compute explanations. Our experiments demonstrate that our approach scales to large instances and significantly outperforms an earlier approach which instantiates the full provenance to compute explanations.
123 - Kalyani Roy 2020
While buying a product from the e-commerce websites, customers generally have a plethora of questions. From the perspective of both the e-commerce service provider as well as the customers, there must be an effective question answering system to provide immediate answers to the user queries. While certain questions can only be answered after using the product, there are many questions which can be answered from the product specification itself. Our work takes a first step in this direction by finding out the relevant product specifications, that can help answering the user questions. We propose an approach to automatically create a training dataset for this problem. We utilize recently proposed XLNet and BERT architectures for this problem and find that they provide much better performance than the Siamese model, previously applied for this problem. Our model gives a good performance even when trained on one vertical and tested across different verticals.
As large graph processing emerges, we observe a costly fork-processing pattern (FPP) that is common in many graph algorithms. The unique feature of the FPP is that it launches many independent queries from different source vertices on the same graph. For example, an algorithm in analyzing the network community profile can execute Personalized PageRanks that start from tens of thousands of source vertices at the same time. We study the efficiency of handling FPPs in state-of-the-art graph processing systems on multi-core architectures. We find that those systems suffer from severe cache miss penalty because of the irregular and uncoordinated memory accesses in processing FPPs. In this paper, we propose ForkGraph, a cache-efficient FPP processing system on multi-core architectures. To improve the cache reuse, we divide the graph into partitions each sized of LLC capacity, and the queries in an FPP are buffered and executed on the partition basis. We further develop efficient intra- and inter-partition execution strategies for efficiency. For intra-partition processing, since the graph partition fits into LLC, we propose to execute each graph query with efficient sequential algorithms (in contrast with parallel algorithms in existing parallel graph processing systems) and present an atomic-free query processing by consolidating contending operations to cache-resident graph partition. For inter-partition processing, we propose yielding and priority-based scheduling, to reduce redundant work in processing. Besides, we theoretically prove that ForkGraph performs the same amount of work, to within a constant factor, as the fastest known sequential algorithms in FPP queries processing, which is work efficient. Our evaluations on real-world graphs show that ForkGraph significantly outperforms state-of-the-art graph processing systems with two orders of magnitude speedups.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا