Do you want to publish a course? Click here

Compensation temperatures and exchange bias in La1.5Ca0.5CoIrO6

244   0   0.0 ( 0 )
 Added by Eduardo Bittar
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the study of magnetic properties of the La1.5Ca0.5CoIrO6 double perovskite. Via ac magnetic susceptibility we have observed evidence of weak ferromagnetism and reentrant spin glass behavior on an antiferromagnetic matrix. Regarding the magnetic behavior as a function of temperature, we have found that the material displays up to three



rate research

Read More

73 - Bimalesh Giri , , Bhawna Sahni 2021
Composite quantum materials are the ideal examples of multifunctional systems which simultaneously host more than one novel quantum phenomenon in physics. Here, we present a combined theoretical and experimental study to demonstrate the presence of an extremely large exchange bias in the range 0.8 T - 2.7 T and a fully compensated magnetic state (FCF) in a special type of Pt and Ni doped Mn$_3$In cubic alloy. Here, oppositely aligned uncompensated moments in two different atomic clusters sum up to zero which are responsible for the FCF state. Our Density functional theory (DFT) calculations show the existence of several possible ferrimagnetic configurations with the FCF as the energetically most stable one. The microscopic origin of the large exchange bias can be interpreted in terms of the exchange interaction between the FCF background and the uncompensated ferrimagnetic clusters stabilized due to its negligible energy difference with respect to the FCF phase. We utilize pulsed magnetic field up to 60 T and 30 T static field magnetization measurements to confirm the intrinsic nature of exchange bias in our system. Finally, our Hall effect measurements demonstrate the importance of uncompensated noncoplanar interfacial moments for the realization of large EB. The present finding of gigantic exchange bias in a unique compensated ferrimagnetic system opens up a direction for the design of novel quantum phenomena for the technological applications.
We present an atomistic model of a single nanoparticle with core/shell structure that takes into account its lattice strucutre and spherical geometry, and in which the values of microscopic parameters such as anisotropy and exchange constants can be tuned in the core, shell and interfacial regions. By means of Monte Carlo simulations of the hysteresis loops based on this model, we have determined the range of microscopic parameters for which loop shifts after field cooling can be observed. The study of the magnetic order of the interfacial spins for different particles sizes and values of the interfacial exchange coupling have allowed us to correlate the appearance of loop asymmetries and vertical displacements to the existence of a fraction of uncompensated spins at the shell interface that remain pinned during field cycling, offering new insight on the microscopic origin of the experimental phenomenology.
We report exchange bias (EB) effect in the Au-Fe3O4 composite nanoparticle system, where one or more Fe3O4 nanoparticles are attached to an Au seed particle forming dimer and cluster morphologies, with the clusters showing much stronger EB in comparison with the dimers. The EB effect develops due to the presence of stress in the Au-Fe3O4 interface which leads to the generation of highly disordered, anisotropic surface spins in the Fe3O4 particle. The EB effect is lost with the removal of the interfacial stress. Our atomistic Monte-Carlo studies are in excellent agreement with the experimental results. These results show a new path towards tuning EB in nanostructures, namely controllably creating interfacial stress, and open up the possibility of tuning the anisotropic properties of biocompatible nanoparticles via a controllable exchange coupling mechanism.
Multiferroic BaMnF$_4$ powder were prepared by hydrothermal method. Hysteretic field dependent magnetization curve at 5 K confirms the weak ferromagnetism aroused from the canted antiferromagnetic spins by magnetoelectric coupling. The blocking temperature of 65 K for exchange bias coincides well with the peak at 65 K in the zero-field cooled temperature-dependent magnetization curve, which has been assigned to the onset temperature of two-dimensional antiferromagnetism. An upturn kink of exchange field and coercivity with decreasing temperature was observed from 40 K to 20 K, which is consistent with the two-dimensional to three-dimensional antiferromagnetic transition at Neel temperature (~26 K). In contrast to the conventional mechanism of magnetization pinned by interfacial exchange coupling in multiphases, the exchange bias in BaMnF$_4$ is argued to be a bulk effect in single phase, due to the magnetization pinned by the polarization through magnetoelectric coupling.
305 - C. A. F. Vaz , E. I. Altman , 2010
A detailed study of the exchange bias effect and the interfacial electronic structure in Ni/Co3O4(011) is reported. Large exchange anisotropies are observed at low temperatures, and the exchange bias effect persists to temperatures well above the Neel temperature of bulk Co3O4, of about 40 K: to ~80 K for Ni films deposited on well ordered oxide surfaces, and ~150 K for Ni films deposited on rougher Co3O4 surfaces. Photoelectron spectroscopy measurements as a function of Ni thickness show that Co reduction and Ni oxidation occur over an extended interfacial region. We conclude that the exchange bias observed in Ni/Co3O4, and in similar ferromagnetic metallic/Co3O4 systems, is not intrinsic to Co3O4 but rather due to the formation of CoO at the interface.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا