Do you want to publish a course? Click here

Galactic Archaeology with CoRoT and APOGEE: Creating mock observations from a chemodynamical model

75   0   0.0 ( 0 )
 Added by Friedrich Anders
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

In a companion paper, we have presented the combined asteroseismic-spectroscopic dataset obtained from CoRoT lightcurves and APOGEE infra-red spectra for 678 solar-like oscillating red giants in two fields of the Galactic disc (CoRoGEE). We have measured chemical abundance patterns, distances, and ages of these field stars which are spread over a large radial range of the Milky Ways disc. Here we show how to simulate this dataset using a chemodynamical Galaxy model. We also demonstrate how the observation procedure influences the accuracy of our estimated ages.



rate research

Read More

With the advent of the space missions CoRoT and Kepler, it has become feasible to determine precise asteroseismic masses and ages for large samples of red-giant stars. In this paper, we present the CoRoGEE dataset -- obtained from CoRoT lightcurves for 606 red giant stars in two fields of the Galactic disc which have been co-observed for an ancillary project of APOGEE. We have used the Bayesian parameter estimation code PARAM to calculate distances, extinctions, masses, and ages for these stars in a homogeneous analysis, resulting in relative statistical uncertainties of $sim2%$ in distance, $sim4%$ in radius, $sim9%$ in mass and $sim25%$ in age. We also assess systematic age uncertainties due to different input physics and mass loss. We discuss the correlation between ages and chemical abundance patterns of field stars over a large radial range of the Milky Ways disc (5 kpc $<R_{rm Gal}<$ 14 kpc), focussing on the [$alpha$/Fe]-[Fe/H]-age plane in five radial bins of the Galactic disc. We find an overall agreement with the expectations of chemical-evolution models computed before the present data were available, especially for the outer regions. However, our data also indicate that a significant fraction of stars now observed near and beyond the Solar Neighbourhood migrated from inner regions. Mock CoRoGEE observations of a chemo-dynamical Milky Way disc model show that the number of high-metallicity stars in the outer disc is too high to be accounted for even by the strong radial mixing present in the model. The mock observations also reveal that the age distribution of the [$alpha$/Fe]-enhanced sequence in the CoRoGEE inner-disc field is much broader than expected from a combination of radial mixing and observational errors. We suggest that a thick disc/bulge component that formed stars for more than 3 Gyr may account for these discrepancies.
151 - Ben Lowing 2014
We present a new technique for creating mock catalogues of the individual stars that make up the accreted component of stellar haloes in cosmological simulations and show how the catalogues can be used to test and interpret observational data. The catalogues are constructed from a combination of methods. A semi-analytic galaxy formation model is used to calculate the star formation history in haloes in an N-body simulation and dark matter particles are tagged with this stellar mass. The tags are converted into individual stars using a stellar population synthesis model to obtain the number density and evolutionary stage of the stars, together with a phase-space sampling method that distributes the stars while ensuring that the phase-space structure of the original N-body simulation is maintained. A set of catalogues based on the $Lambda$CDM Aquarius simulations of Milky Way mass haloes have been created and made publicly available on a website. Two example applications are discussed that demonstrate the power and flexibility of the mock catalogues. We show how the rich stellar substructure that survives in the stellar halo precludes a simple measurement of its density profile and demonstrate explicitly how pencil-beam surveys can return almost any value for the slope of the profile. We also show that localized variations in the abundance of particular types of stars, a signature of differences in the composition of stellar populations, allow streams to be easily identified.
I present an overview of the science goals and achievements of ongoing spectroscopic surveys of individual stars in the nearby Universe. I include a brief discussion of the development of the field of Galactic Archaeology - using the fossil record in old stars nearby to infer how our Galaxy evolved and place the Milky Way in cosmological context.
Chemical tagging of stellar debris from disrupted open clusters and associations underpins the science cases for next-generation multi-object spectroscopic surveys. As part of the Galactic Archaeology project TraCD (Tracking Cluster Debris), a preliminary attempt at reconstructing the birth clouds of now phase-mixed thin disk debris is undertaken using a parametric minimum spanning tree (MST) approach. Empirically-motivated chemical abundance pattern uncertainties (for a 10-dimensional chemistry-space) are applied to NBODY6-realised stellar associations dissolved into a background sea of field stars, all evolving in a Milky Way potential. We demonstrate that significant population reconstruction degeneracies appear when the abundance uncertainties approach 0.1 dex and the parameterised MST approach is employed; more sophisticated methodologies will be required to ameliorate these degeneracies.
Simpsons paradox, or Yule-Simpson effect, arises when a trend appears in different subsets of data but disappears or reverses when these subsets are combined. We describe here seven cases of this phenomenon for chemo-kinematical relations believed to constrain the Milky Way disk formation and evolution. We show that interpreting trends in relations, such as the radial and vertical chemical abundance gradients, the age-metallicity relation, and the metallicity-rotational velocity relation (MVR), can lead to conflicting conclusions about the Galaxy past if analyses marginalize over stellar age and/or birth radius. It is demonstrated that the MVR in RAVE giants is consistent with being always strongly negative, when narrow bins of [Mg/Fe] are considered. This is directly related to the negative radial metallicity gradients of stars grouped by common age (mono-age populations) due to the inside out disk formation. The effect of the asymmetric drift can then give rise to a positive MVR trend in high-[alpha/Fe] stars, with a slope dependent on a given surveys selection function and observational uncertainties. We also study the variation of lithium abundance, A(Li), with [Fe/H] of AMBRE:HARPS dwarfs. A strong reversal in the positive A(Li)-[Fe/H] trend of the total sample is found for mono-age populations, flattening for younger groups of stars. Dissecting by birth radius shows strengthening in the positive A(Li)-[Fe/H] trend, shifting to higher [Fe/H] with decreasing birth radius; these observational results suggest new constraints on chemical evolution models. This work highlights the necessity for precise age estimates for large stellar samples covering wide spatial regions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا