Do you want to publish a course? Click here

General Monogamy of Tsallis $q$-Entropy Entanglement in Multiqubit Systems

89   0   0.0 ( 0 )
 Added by Yu Luo
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we study the monogamy inequality of Tsallis-q entropy entanglement. We first provide an analytic formula of Tsallis-q entropy entanglement in two-qubit systems for $frac{5-sqrt{13}}{2}leq qleqfrac{5+sqrt{13}}{2}.$ The analytic formula of Tsallis-q entropy entanglement in $2otimes d$ system is also obtained and we show that Tsallis-q entropy entanglement satisfies a set of hierarchical monogamy equalities. Furthermore, we prove the squared Tsallis-q entropy entanglement follows a general inequality in the qubit systems. Based on the monogamy relations, a set of multipartite entanglement indicators is constructed, which can detect all genuine multiqubit entangled states even in the case of $N$-tangle vanishes. Moreover, we study some examples in multipartite higher-dimensional system for the monogamy inequalities.



rate research

Read More

Tsallis-$q$ entanglement is a bipartite entanglement measure which is the generalization of entanglement of formation for $q$ tending to 1. We first expand the range of $q$ for the analytic formula of Tsallis-emph{q} entanglement. For $frac{5-sqrt{13}}{2} leq emph{q} leq frac{5+sqrt{13}}{2}$, we prove the monogamy relation in terms of the squared Tsallis-$q$ entanglement for an arbitrary multi-qubit systems. It is shown that the multipartite entanglement indicator based on squared Tsallis-$q$ entanglement still works well even when the indicator based on the squared concurrence loses its efficacy. We also show that the $mu$-th power of Tsallis-emph{q} entanglement satisfies the monogamy or polygamy inequalities for any three-qubit state.
286 - Yan-Kui Bai , Ming-Yong Ye , 2009
We analyze the entanglement distribution and the two-qubit residual entanglement in multipartite systems. For a composite system consisting of two cavities interacting with independent reservoirs, it is revealed that the entanglement evolution is restricted by an entanglement monogamy relation derived here. Moreover, it is found that the initial cavity-cavity entanglement evolves completely to the genuine four-partite cavities-reservoirs entanglement in the time interval between the sudden death of cavity-cavity entanglement and the birth of reservoir-reservoir entanglement. In addition, we also address the relationship between the genuine block-block entanglement form and qubit-block form in the interval.
156 - Xuena Zhu , Shaoming Fei 2014
We investigate the monogamy relations related to the concurrence and the entanglement of formation. General monogamy inequalities given by the {alpha}th power of concurrence and entanglement of formation are presented for N-qubit states. The monogamy relation for entanglement of assistance is also established. Based on these general monogamy relations, the residual entanglement of concurrence and entanglement of formation are studied. Some relations among the residual entanglement, entanglement of assistance, and three tangle are also presented.
152 - Lin Chen , Yi-Xin Chen 2007
We introduce a feasible method of constructing the entanglement witness that detects the genuine entanglement of a given pure multiqubit state. We illustrate our method in the scenario of constructing the witnesses for the multiqubit states that are broadly theoretically and experimentally investigated. It is shown that our method can construct the effective witnesses for experiments. We also investigate the entanglement detection of symmetric states and mixed states.
Monogamy and polygamy relations characterize the distributions of entanglement in multipartite systems. We provide classes of monogamy and polygamy inequalities of multiqubit entanglement in terms of concurrence, entanglement of formation, negativity, Tsallis-$q$ entanglement and R{e}nyi-$alpha$ entanglement, respectively. We show that these inequalities are tighter than the existing ones for some classes of quantum states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا