No Arabic abstract
We investigate the monogamy relations related to the concurrence and the entanglement of formation. General monogamy inequalities given by the {alpha}th power of concurrence and entanglement of formation are presented for N-qubit states. The monogamy relation for entanglement of assistance is also established. Based on these general monogamy relations, the residual entanglement of concurrence and entanglement of formation are studied. Some relations among the residual entanglement, entanglement of assistance, and three tangle are also presented.
We present a new kind of monogamous relations based on concurrence and concurrence of assistance. For $N$-qubit systems $ABC_1...C_{N-2}$, the monogamy relations satisfied by the concurrence of $N$-qubit pure states under the partition $AB$ and $C_1...C_{N-2}$, as well as under the partition $ABC_1$ and $C_2...C_{N-2}$ are established, which give rise to a kind of restrictions on the entanglement distribution and trade off among the subsystems.
Tsallis-$q$ entanglement is a bipartite entanglement measure which is the generalization of entanglement of formation for $q$ tending to 1. We first expand the range of $q$ for the analytic formula of Tsallis-emph{q} entanglement. For $frac{5-sqrt{13}}{2} leq emph{q} leq frac{5+sqrt{13}}{2}$, we prove the monogamy relation in terms of the squared Tsallis-$q$ entanglement for an arbitrary multi-qubit systems. It is shown that the multipartite entanglement indicator based on squared Tsallis-$q$ entanglement still works well even when the indicator based on the squared concurrence loses its efficacy. We also show that the $mu$-th power of Tsallis-emph{q} entanglement satisfies the monogamy or polygamy inequalities for any three-qubit state.
We examine the various properties of the three four-qubit monogamy relations, all of which introduce the power factors in the three-way entanglement to reduce the tripartite contributions. On the analytic ground as much as possible we try to find the minimal power factors, which make the monogamy relations hold if the power factors are larger than the minimal powers. Motivated to the three-qubit monogamy inequality we also examine whether those four-qubit monogamy relations provide the SLOCC-invariant four-way entanglement measures or not. Our analysis indicate that this is impossible provided that the monogamy inequalities are derived merely by introducing weighting power factors.
Nonclassical correlations have been found useful in many quantum information processing tasks, and various measures have been proposed to quantify these correlations. In this work, we mainly study one of nonclassical correlations, called measurement-induced nonlocality (MIN). First, we establish a close connection between this nonlocal effect and the Bell nonlocality for two-qubit states. Then, we derive a tight monogamy relation of MIN for any pure three-qubit state and provide an alternative way to obtain similar monogamy relations for other nonclassical correlation measures, including squared negativity, quantum discord, and geometric quantum discord. Finally, we find that the tight monogamy relation of MIN is violated by some mixed three-qubit states, however, a weaker monogamy relation of MIN for mixed states and even multi-qubit states is still obtained.
We analyze the entanglement distribution and the two-qubit residual entanglement in multipartite systems. For a composite system consisting of two cavities interacting with independent reservoirs, it is revealed that the entanglement evolution is restricted by an entanglement monogamy relation derived here. Moreover, it is found that the initial cavity-cavity entanglement evolves completely to the genuine four-partite cavities-reservoirs entanglement in the time interval between the sudden death of cavity-cavity entanglement and the birth of reservoir-reservoir entanglement. In addition, we also address the relationship between the genuine block-block entanglement form and qubit-block form in the interval.