Do you want to publish a course? Click here

Fast stochastic variability study of two SU UMa systems V1504 Cyg and V344 Lyr observed by Kepler satellite

60   0   0.0 ( 0 )
 Added by Andrej Dobrotka
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analysed Kepler data of two similar dwarf novae V344 Lyr and V1504 Cyg in order to study optical fast stochastic variability (flickering) by searching for characteristic break frequencies in their power density spectra. Two different stages of activity were analysed separately, i.e. regular outbursts and quiescence. Both systems show similar behaviour during both activity stages. The quiescent power density spectra show a dominant low break frequency which is also present during outburst with a more or less stable value in V344 Lyr while it is slightly higher in V1504 Cyg. The origin of this variability is probably the whole accretion disc. Both outburst power density spectra show additional high frequency components which we interpret as generated by the rebuilt inner disc that was truncated during quiescence. Moreover, V344 Lyr shows the typical linear rms-flux relation which is strongly deformed by a possible negative superhump variability.



rate research

Read More

135 - Yoji Osaki 2013
We have studied the short-cadence Kepler public light curves of SU UMa stars, V344 Lyr and V1504 Cyg extending over a period of more than two years by using power spectral analysis. We determined the orbital period of V344 Lyr to be Porb=0.087903(1) d. We also reanalyzed the frequency variation of the negative superhump in a complete supercycle of V1504 Cyg with additional data of the O-C diagram, confirming that its characteristic variation is in accordance with the thermal-tidal instability model. We present a new two-dimensional period analysis based on a new method of a least absolute shrinkage and selection operator (Lasso). The new method gives very sharp peaks in the power spectra, and it is very useful for studying of the frequency variation in cataclysmic variable stars. We also analyzed simultaneous frequency variations of the positive and negative superhumps. If they are appropriately converted, it is found that they vary in unison, indicating that they represent a disk-radius variation. We have also studied the frequency (or period) variations of positive superhumps during superoutbursts. These variations can be understood in a qualitative way by combining of the disk radius variation and the variation of pressure effects during a superoutburst. A sudden excitation of oscillation with a frequency range near to the negative superhump (which we call impulsive negative superhump) was observed in the descending branch of several outbursts of V344 Lyr. These events seem to have occurred just prior to the next superoutburst, and to act as a lead of the impending superoutburst.
171 - Yoji Osaki 2013
We made a supplemental study of the superoutbursts and superhumps in SU UMa stars by using the recently released Kepler public data of V1504 Cyg and V344 Lyr. One of the superoutbursts in V1504 Cyg was preceded by a precursor normal outburst which was well separated from the main superoutburst. The superhump first appeared during the descending branch of the precursor normal outburst and it continued into quiescence (the deep dip between the precursor and the main superoutburst), and it began to grow in amplitude with the growth of the main superoutburst after quiescence ended. A similar phenomenon was also observed in V344 Lyr. This observation demonstrates very clearly that the superoutburst was triggered by the superhump (i.e., by the tidal instability), supporting the thermal-tidal instability model. Smak (2013, Acta Astron., 63, 109, arXiv:1301.0187) criticized our previous paper (Osaki and Kato, 2013, PASJ, 65, 50, arXiv:1212.1516) and challenged our main conclusion that various observational lines of evidence of V1504 Cyg support the thermal-tidal instability model for the superoutbursts of SU UMa stars. We present our detailed accounts to all of his criticisms by offering clear explanations. We conclude that the thermal-tidal instability model is after all only the viable model for the superoutbursts and superhumps in SU UMa stars.
96 - A. Dobrotka , J.-U. Ness 2015
An optical light curve of SU UMa type dwarf nova V1504 Cyg taken by Kepler was analysed in order to study fast optical variability (flickering). We calculated power density spectra and rms-flux relations for two different stages of activity, i.e. quiescence and regular outbursts. A multicomponent power density spectrum with two break frequencies was found during both activity stages. The rms-flux relation is obvious only in the quiescent data. However, while the collection of all outburst data do not show this variability, every individual outburst does show it in the majority of cases keeping the rms value approximately in the same interval. Furthermore, the same analysis was performed for light curve subsamples taken from the beginning, middle and the end of the supercycle both for quiescence and regular outbursts. Every light curve subsample shows the same multicomponent power density spectrum. The stability of the break frequencies over the supercycle can be confirmed for all frequencies except for the high break frequency during outburst, which shows variability, but with rather low confidence. Finally, the low break frequency can be associated with the geometrically thin disc or its inner edge, while the high break frequency can originate from the inner geometrically thick hot disc. Furthermore, with our statistical method to simulate flickering light curves, we show that the outburst flickering light curve of V1504 Cyg needs an additional constant flux level to explain the observed rms-flux behaviour. Therefore, during the outbursts another non-turbulent radiation source should be present.
Recent re-determination of stellar atmospheric parameters for a sample of stars observed during the {it Kepler} mission allowed to enlarge the number of {it Kepler} B-type stars. We present the detailed frequency analysis for all these objects. All stars exhibit pulsational variability with maximum amplitudes at frequencies corresponding to high-order g modes. Peaks that could be identified with low-order p/g modes are also extracted for a few stars. We identified some patters in the oscillation spectra that can be associated with the period spacings that can result from the asymptotic nature of the detected pulsational modes. We also tentatively confront the observed oscillation characteristics with predictions from linear nonadiabatic computations of stellar pulsations. For high-order g modes the traditional approximation was employed to include the effects of rotation on the frequency values and mode instability.
191 - Taichi Kato 2013
We studied the Kepler light curves of three SU UMa-type dwarf novae. Both the background dwarf nova of KIC 4378554 and V516 Lyr showed a combination of precursor-main superoutburst, during which superhumps always developed on the fading branch of the precursor. This finding supports the thermal-tidal instability theory as the origin of the superoutburst. A superoutburst of V585 Lyr recorded by Kepler did not show a precursor outburst and the superhumps developed only after the maximum light, a first example in the Kepler data so far. Such a superoutburst is understood within the thermal-tidal instability model. The observation of V585 Lyr made the first clear Kepler detection of the positive period derivative commonly seen in the stage B superhumps in dwarf novae with short orbital periods. In all objects, there was no strong signature of a transition to the dominating stream impact-type component of superhumps, suggesting that there is no strong indication of an enhanced mass-transfer following the superoutburst. We have determined the orbital period of V516 Lyr to be 0.083999(8) d. In V516 Lyr, some of outbursts were double outbursts in a various degree. The preceding outburst in the double outburst was of the inside-out nature while the following one was of the outside-in nature. One of superoutbursts in V516 Lyr was preceded by a double precursor. The preceding precursor failed to trigger a superoutburst and the following precursor triggered a superoutburst by developing positive superhumps.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا