No Arabic abstract
Many graphics and vision problems can be expressed as non-linear least squares optimizations of objective functions over visual data, such as images and meshes. The mathematical descriptions of these functions are extremely concise, but their implementation in real code is tedious, especially when optimized for real-time performance on modern GPUs in interactive applications. In this work, we propose a new language, Opt (available under http://optlang.org), for writing these objective functions over image- or graph-structured unknowns concisely and at a high level. Our compiler automatically transforms these specifications into state-of-the-art GPU solvers based on Gauss-Newton or Levenberg-Marquardt methods. Opt can generate different variations of the solver, so users can easily explore tradeoffs in numerical precision, matrix-free methods, and solver approaches. In our results, we implement a variety of real-world graphics and vision applications. Their energy functions are expressible in tens of lines of code, and produce highly-optimized GPU solver implementations. These solver have performance competitive with the best published hand-tuned, application-specific GPU solvers, and orders of magnitude beyond a general-purpose auto-generated solver.
The medial axis transform has applications in numerous fields including visualization, computer graphics, and computer vision. Unfortunately, traditional medial axis transformations are usually brittle in the presence of outliers, perturbations and/or noise along the boundary of objects. To overcome this limitation, we introduce a new formulation of the medial axis transform which is naturally robust in the presence of these artifacts. Unlike previous work which has approached the medial axis from a computational geometry angle, we consider it from a numerical optimization perspective. In this work, we follow the definition of the medial axis transform as the set of maximally inscribed spheres. We show how this definition can be formulated as a least squares relaxation where the transform is obtained by minimizing a continuous optimization problem. The proposed approach is inherently parallelizable by performing independant optimization of each sphere using Gauss-Newton, and its least-squares form allows it to be significantly more robust compared to traditional computational geometry approaches. Extensive experiments on 2D and 3D objects demonstrate that our method provides superior results to the state of the art on both synthetic and real-data.
Quantum computing exploits quantum phenomena such as superposition and entanglement to realize a form of parallelism that is not available to traditional computing. It offers the potential of significant computational speed-ups in quantum chemistry, materials science, cryptography, and machine learning. The dominant approach to programming quantum computers is to provide an existing high-level language with libraries that allow for the expression of quantum programs. This approach can permit computations that are meaningless in a quantum context; prohibits succinct expression of interaction between classical and quantum logic; and does not provide important constructs that are required for quantum programming. We present Q#, a quantum-focused domain-specific language explicitly designed to correctly, clearly and completely express quantum algorithms. Q# provides a type system, a tightly constrained environment to safely interleave classical and quantum computations; specialized syntax, symbolic code manipulation to automatically generate correct transformations of quantum operations, and powerful functional constructs which aid composition.
In order to avoid the curse of dimensionality, frequently encountered in Big Data analysis, there was a vast development in the field of linear and nonlinear dimension reduction techniques in recent years. These techniques (sometimes referred to as manifold learning) assume that the scattered input data is lying on a lower dimensional manifold, thus the high dimensionality problem can be overcome by learning the lower dimensionality behavior. However, in real life applications, data is often very noisy. In this work, we propose a method to approximate $mathcal{M}$ a $d$-dimensional $C^{m+1}$ smooth submanifold of $mathbb{R}^n$ ($d ll n$) based upon noisy scattered data points (i.e., a data cloud). We assume that the data points are located near the lower dimensional manifold and suggest a non-linear moving least-squares projection on an approximating $d$-dimensional manifold. Under some mild assumptions, the resulting approximant is shown to be infinitely smooth and of high approximation order (i.e., $O(h^{m+1})$, where $h$ is the fill distance and $m$ is the degree of the local polynomial approximation). The method presented here assumes no analytic knowledge of the approximated manifold and the approximation algorithm is linear in the large dimension $n$. Furthermore, the approximating manifold can serve as a framework to perform operations directly on the high dimensional data in a computationally efficient manner. This way, the preparatory step of dimension reduction, which induces distortions to the data, can be avoided altogether.
Edge bundling methods can effectively alleviate visual clutter and reveal high-level graph structures in large graph visualization. Researchers have devoted significant efforts to improve edge bundling according to different metrics. As the edge bundling family evolve rapidly, the quality of edge bundles receives increasing attention in the literature accordingly. In this paper, we present MLSEB, a novel method to generate edge bundles based on moving least squares (MLS) approximation. In comparison with previous edge bundling methods, we argue that our MLSEB approach can generate better results based on a quantitative metric of quality, and also ensure scalability and the efficiency for visualizing large graphs.
The investigation of samples with a spatial resolution in the nanometer range relies on the precise and stable positioning of the sample. Due to inherent mechanical instabilities of typical sample stages in optical microscopes, it is usually required to control and/or monitor the sample position during the acquisition. The tracking of sparsely distributed fiducial markers at high speed allows stabilizing the sample position at millisecond time scales. For this purpose, we present a scalable fitting algorithm with significantly improved performance for two-dimensional Gaussian fits as compared to Gpufit.