Do you want to publish a course? Click here

The Role of Tensorial Electronic Friction in Energy Transfer at Metal Surfaces

88   0   0.0 ( 0 )
 Added by Reinhard Maurer
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

An accurate description of nonadiabatic energy relaxation is crucial for modeling atomistic dynamics at metal surfaces. Interfacial energy transfer due to electron-hole pair excitations coupled to motion of molecular adsorbates is often simulated by Langevin molecular dynamics with electronic friction. Here, we present calculations of the full electronic friction tensor by using first order time-dependent perturbation theory (TDPT) at the density functional theory (DFT) level. We show that the friction tensor is generally anisotropic and non-diagonal, as found for hydrogen atom on Pd(100) and CO on a Cu(100) surfaces. This implies that electron-hole pair induced nonadiabatic coupling at metal surfaces leads to friction-induced mode coupling, therefore opening an additional channel for energy redistribution. We demonstrate the robustness and accuracy of our results by direct comparison to established methods and experimental data.



rate research

Read More

Molecular adsorbates on metal surfaces exchange energy with substrate phonons and low-lying electron-hole pair excitations. In the limit of weak coupling, electron-hole pair excitations can be seen as exerting frictional forces on adsorbates that enhance energy transfer and facilitate vibrational relaxation or hot-electron mediated chemistry. We have recently reported on the relevance of tensorial properties of electronic friction [Phys. Rev. Lett. 116, 217601 (2016)] in dynamics at surfaces. Here we present the underlying implementation of tensorial electronic friction based on Kohn-Sham Density Functional Theory for condensed phase and cluster systems. Using local atomic-orbital basis sets, we calculate nonadiabatic coupling matrix elements and evaluate the full electronic friction tensor in the classical limit. Our approach is numerically stable and robust as shown by a detailed convergence analysis. We furthermore benchmark the accuracy of our approach by calculation of vibrational relaxation rates and lifetimes for a number of diatomic molecules at metal surfaces. We find friction-induced mode-coupling between neighboring CO adsorbates on Cu(100) in a c(2x2) overlayer to be important to understand experimental findings.
Electronic friction and the ensuing nonadiabatic energy loss play an important role in chemical reaction dynamics at metal surfaces. Using molecular dynamics with electronic friction evaluated on-the-fly from Density Functional Theory, we find strong mode dependence and a dominance of nonadiabatic energy loss along the bond stretch coordinate for scattering and dissociative chemisorption of H$_2$ on the Ag(111) surface. Exemplary trajectories with varying initial conditions indicate that this mode-specificity translates into modulated energy loss during a dissociative chemisorption event. Despite minor nonadiabatic energy loss of about 5%, the directionality of friction forces induces dynamical steering that affects individual reaction outcomes, specifically for low-incidence energies and vibrationally excited molecules. Mode-specific friction induces enhanced loss of rovibrational rather than translational energy and will be most visible in its effect on final energy distributions in molecular scattering experiments.
100 - L. De Santis , R. Resta 2000
We investigate some surfaces of a paradigmatic sp bonded metal--namely, Al(110), Al(100), and Al(111)--by means of the electron localization function (ELF), implemented in a first-principle pseudopotential framework. ELF is a ground-state property which discriminates in a very sharp, quantitative, way between different kinds of bonding. ELF shows that in the bulk of Al the electron distribution is essentially jelliumlike, while what happens at the surface strongly depends on packing. At the least packed surface, Al(110), ELF indicates a free-atom nature of the electron distribution in the outer region. The most packed surface, Al(111), is instead at the opposite end, and can be regarded as a jellium surface weakly perturbed by the presence of the ionic cores.
We present a x-ray dichroism study of graphite surfaces that addresses the origin and magnitude of ferromagnetism in metal-free carbon. We find that, in addition to carbon $pi$ states, also hydrogen-mediated electronic states exhibit a net spin polarization with significant magnetic remanence at room temperature. The observed magnetism is restricted to the top $approx$10 nm of the irradiated sample where the actual magnetization reaches $ simeq 15$ emu/g at room temperature. We prove that the ferromagnetism found in metal-free untreated graphite is intrinsic and has a similar origin as the one found in proton bombarded graphite.
The time-dependent, mean-field Newns-Anderson model for a spin-polarised adsorbate approaching a metallic surface is solved in the wide-band limit. Equations for the time-evolution of the electronic structure of the adsorbate-metal system are derived and the spectrum of electronic excitations is found. The behaviour of the model is demonstrated for a set of physically reasonable parameters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا