Do you want to publish a course? Click here

Reliable Physical-layer Network Coding Supporting Real Applications

120   0   0.0 ( 0 )
 Added by Lizhao You
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

This paper presents the first reliable physical-layer network coding (PNC) system that supports real TCP/IP applications for the two-way relay network (TWRN). Theoretically, PNC could boost the throughput of TWRN by a factor of 2 compared with traditional scheduling (TS) in the high signal-to-noise (SNR) regime. Although there have been many theoretical studies on PNC performance, there have been relatively few experimental and implementation efforts. Our earlier PNC prototype, built in 2012, was an offline system that processed signals offline. For a system that supports real applications, signals must be processed online in real-time. Our real-time reliable PNC prototype, referred to as RPNC, solves a number of key challenges to enable the support of real TCP/IP applications. The enabling components include: 1) a time-slotted system that achieves us-level synchronization for the PNC system; 2) reduction of PNC signal processing complexity to meet real-time constraints; 3) an ARQ design tailored for PNC to ensure reliable packet delivery; 4) an interface to the application layer. We took on the challenge to implement all the above with general-purpose processors in PC through an SDR platform rather than ASIC or FPGA. With all these components, we have successfully demonstrated image exchange with TCP and twoparty video conferencing with UDP over RPNC. Experimental results show that the achieved throughput approaches the PHYlayer data rate at high SNR, demonstrating the high efficiency of the RPNC system.



rate research

Read More

Physical-layer Network Coding (PNC) can significantly improve the throughput of wireless two way relay channel (TWRC) by allowing the two end nodes to transmit messages to the relay simultaneously. To achieve reliable communication, channel coding could be applied on top of PNC. This paper investigates link-by-link channel-coded PNC, in which a critical process at the relay is to transform the superimposed channel-coded packets received from the two end nodes plus noise, Y3=X1+X2+W3, to the network-coded combination of the source packets, S1 XOR S2 . This is in distinct to the traditional multiple-access problem, in which the goal is to obtain S1 and S2 separately. The transformation from Y3 to (S1 XOR S2) is referred to as the Channel-decoding-Network-Coding process (CNC) in that it involves both channel decoding and network coding operations. A contribution of this paper is the insight that in designing CNC, we should first (i) channel-decode Y3 to the superimposed source symbols S1+S2 before (ii) transforming S1+S2 to the network-coded packets (S1 XOR S2) . Compared with previously proposed strategies for CNC, this strategy reduces the channel-coding network-coding mismatch. It is not obvious, however, that an efficient decoder for step (i) exists. A second contribution of this paper is to provide an explicit construction of such a decoder based on the use of the Repeat Accumulate (RA) code. Specifically, we redesign the belief propagation algorithm of the RA code for traditional point-to-point channel to suit the need of the PNC multiple-access channel. Simulation results show that our new scheme outperforms the previously proposed schemes significantly in terms of BER without added complexity.
The growing demand for high-speed data, quality of service (QoS) assurance and energy efficiency has triggered the evolution of 4G LTE-A networks to 5G and beyond. Interference is still a major performance bottleneck. This paper studies the application of physical-layer network coding (PNC), a technique that exploits interference, in heterogeneous cellular networks. In particular, we propose a rate-maximising relay selection algorithm for a single cell with multiple relays based on the decode-and-forward strategy. With nodes transmitting at different powers, the proposed algorithm adapts the resource allocation according to the differing link rates and we prove theoretically that the optimisation problem is log-concave. The proposed technique is shown to perform significantly better than the widely studied selection-cooperation technique. We then undertake an experimental study on a software radio platform of the decoding performance of PNC with unbalanced SNRs in the multiple-access transmissions. This problem is inherent in cellular networks and it is shown that with channel coding and decoders based on multiuser detection and successive interference cancellation, the performance is better with power imbalance. This paper paves the way for further research in multi-cell PNC, resource allocation, and the implementation of PNC with higher-order modulations and advanced coding techniques.
Leveraging recent progress in physical-layer network coding we propose a new approach to random access: When packets collide, it is possible to recover a linear combination of the packets at the receiver. Over many rounds of transmission, the receiver can thus obtain many linear combinations and eventually recover all original packets. This is by contrast to slotted ALOHA where packet collisions lead to complete erasures. The throughput of the proposed strategy is derived and shown to be significantly superior to the best known strategies, including multipacket reception.
This paper investigates noncoherent detection in a two-way relay channel operated with physical layer network coding (PNC), assuming FSK modulation and short-packet transmissions. For noncoherent detection, the detector has access to the magnitude but not the phase of the received signal. For conventional communication in which a receiver receives the signal from a transmitter only, the phase does not affect the magnitude, hence the performance of the noncoherent detector is independent of the phase. PNC, however, is a multiuser system in which a receiver receives signals from multiple transmitters simultaneously. The relative phase of the signals from different transmitters affects the received signal magnitude through constructive-destructive interference. In particular, for good performance, the noncoherent detector in PNC must take into account the influence of the relative phase on the signal magnitude. Building on this observation, this paper delves into the fundamentals of PNC noncoherent detector design. To avoid excessive overhead, we do away from preambles. We show how the relative phase can be deduced directly from the magnitudes of the received data symbols. Numerical results show that our detector performs nearly as well as a fictitious optimal detector that has perfect knowledge of the channel gains and relative phase.
As a subfield of network coding, physical-layer network coding (PNC) can effectively enhance the throughput of wireless networks by mapping superimposed signals at receiver to other forms of user messages. Over the past twenty years, PNC has received significant research attention and has been widely studied in various communication scenarios, e.g., two-way relay communications (TWRC), nonorthogonal multiple access (NOMA) in 5G networks, random access networks, etc. To ensure network reliability, channel-coded PNC is proposed and related communication techniques are investigated, such as the design of channel code, low-complexity decoding, and cross-layer design. In this article, we briefly review the variants of channel-coded PNC wireless communications with the aim of inspiring future research activities in this area. We also put forth open research problems along with a few selected research directions under PNC-aided frameworks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا