No Arabic abstract
We theoretically study intrinsic superconductivity in doped Dirac semimetals. Dirac semimetals host bulk Dirac points, which are formed by doubly degenerate bands, so the Hamiltonian is described by a $4 times 4$ matrix and six types of $k$-independent pair potentials are allowed by the Fermi-Dirac statistics. We show that the unique spin-orbit coupling leads to characteristic superconducting gap structures and $d$ vectors on the Fermi surface and the electron-electron interaction between intra and interorbitals gives a novel phase diagram of superconductivity. It is found that when the inter-orbital attraction is dominant, an unconventional superconducting state with point nodes appears. To verify the experimental signature of possible superconducting states, we calculate the temperature dependence of bulk physical properties such as electronic specific heat and spin susceptibility and surface state. In the unconventional superconducting phase, either dispersive or flat Andreev bound states appear between point nodes, which leads to double peaks or single peak in the surface density of states, respectively. As a result, possible superconducting states can be distinguished by combining bulk and surface measurements.
We formulate a general framework for addressing both odd- and even-frequency superconductivity in Dirac semimetals and demonstrate that the odd-frequency or the Berezinskii pairing can naturally appear in these materials because of the chirality degree of freedom. We show that repulsive frequency-dependent interactions favor the Berezinskii pairing while an attractive electron-electron interaction allows for the BCS pairing. In the case of compensated Dirac and Weyl semimetals, both the conventional BCS and odd-frequency Berezinskii pairings require critical coupling. Since these pairings could originate from physically different mechanisms, our findings pave the way for controlling the realization of the Berezinskii superconductivity in topological semimetals. We also present the density of states with several cusp-like features that can serve as an experimentally verifiable signature of the odd-frequency gap.
We study the vortex bound states in three dimensional (3D) superconducting Dirac semimetals with time reversal symmetry. Assuming two Dirac points on the kz-axis and bulk s-wave superconductivity, with a quantum vortex line parallel to the z-direction, we find that the superconducting vortex line has a robust quasi-1D nodal phase. The nodal phase stems from the symmetry protected Dirac points in the normal state bands, and it can be characterized by a topological index ( u; n) at kz = 0 and kz = pi, where u is the Z2 topological invariant for a 0D class-D system and n is the Z topological invariant for a 0D class-A system according to the Altland- Zirnbauer classification. Based on the topological index, we find that vortex end Majorana zero mode can coexist with the quasi-1D nodal phase in certain kinds of Dirac semimetals. The influence of the symmetry breaking perturbations on the quasi-1D nodal phase is also analyzed. Finally, we discuss the possible material realization of such nodal vortex line state.
Unconventional superconductivity has been discovered in a variety of doped materials, including topological insulators, semimetals and twisted bilayers. A unifying property of these systems is strong orbital hybridization, which involves pairing of states with non-trivial Bloch wave functions. In contrast to naive expectation, many of these superconductors are relatively resilient to disorder. Here we study the effects of a generic disorder on superconductivity in doped 3D Dirac systems, which serve as a paradigmatic example for the dispersion near a band crossing point. We argue that due to strong orbital hybridization, interorbital scattering processes are naturally present and must be taken into account. We calculate the reduction of the critical temperature for a variety of pairing states and scattering channels using Abrikosov-Gorkov theory. In that way, the role of disorder is captured by a single parameter $Gamma$, the pair scattering rate. This procedure is very general and can be readily applied to different band structures and disorder configurations. Our results show that interorbital scattering has a significant effect on superconductivity, where the robustness of different pairing states highly depends on the relative strength of the different interorbital scattering channels. Our analysis also reveals a protection, analogous to the Andersons theorem, of the odd-parity pairing state with total angular momentum zero (the B-phase of superfluid $^3$He). This odd-pairty state is a singlet of partners under $mathcal{CT}$ symmetry (rather than $mathcal{T}$ symmetry in the standard Andersons theory), where $mathcal{C}$ and $mathcal{T}$ are chiral and time-reversal symmetries, respectively. As a result, it is protected against any disorder potential that respects $mathcal{CT}$ symmetry, which includes a family of time-reversal odd (magnetic) impurities.
Here we report the synthesis and basic characterization of LaFe1-xCoxAsO for several values of x. The parent phase LaFeAsO orders antiferromagnetically (TN ~ 145 K). Replacing Fe with Co is expected to both electron dope the system and introduce disorder in the FeAs layer. For x = 0.05 antiferromagnetic order is destroyed and superconductivity is observed at Tconset = 11.2 K. For x = 0.11 superconductivity is observed at Tc(onset) = 14.3 K, and for x = 0.15 Tc = 6.0 K. Superconductivity is not observed for x = 0.2 and 0.5, but for x = 1, the material appears to be ferromagnetic (Tc ~ 56 K) as judged by magnetization measurements. We conclude that Co is an effective dopant to induce superconductivity. Somewhat surprisingly, the system appears to tolerate considerable disorder in the FeAs planes.
Here we report the synthesis and basic characterization of SmFe1-xCoxAsO (x=0.10, 0.15). The parent compound SmFeAsO itself is not superconducting but shows an antiferromagnetic order near 150 K, which must be suppressed by doping before superconductivity emerges. With Co-doping in the FeAs planes, antiferromagnetic order is destroyed and superconductivity occurs at 15 K. Similar to LaFe1-xCoxAsO, the SmFe1-xCoxAsO system appears to tolerate considerable disorder in the FeAs planes. This result is important, which indicates difference between cuprare superconductors and the iron-based arsenide ones.