Do you want to publish a course? Click here

Quantum correlated cluster mean-field theory applied to the transverse Ising model

86   0   0.0 ( 0 )
 Added by Jonas Maziero
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Mean-field theory (MFT) is one of the main available tools for analytical calculations entailed in investigations regarding many-body systems. Recently, there have been an urge of interest in ameliorating this kind of method, mainly with the aim of incorporating geometric and correlation properties of these systems. The correlated cluster MFT (CCMFT) is an improvement that succeeded quite well in doing that for classical spin systems. Nevertheless, even the CCMFT presents some deficiencies when applied to quantum systems. In this article, we address this issue by proposing the quantum CCMFT (QCCMFT), which, in contrast to its former approach, uses general quantum states in its self-consistent mean-field equations. We apply the introduced QCCMFT to the transverse Ising model in honeycomb, square, and simple cubic lattices and obtain fairly good results both for the Curie temperature of thermal phase transition and for the critical field of quantum phase transition. Actually, our results match those obtained via exact solutions, series expansions or Monte Carlo simulations.



rate research

Read More

We show that an high temperature expansion at fixed order parameter can be derived for the quantum Ising model. The basic point is to consider a statistical generating functional associated to the local spin state. The probability at thermal equilibrium of this state reflects directly the occurrence of a spontaneous symmetry breaking. It is possible to recover the expansion around the mean field in the system dimensionality if the ``direction in the Hilbert space of local spin states is suitably chosen. Results for the free energy at the critical temperature, as a function of the transverse field, in first order approximation in the inverse system dimensionality are compared with those of the standard approach.
We study the matrix elements of few-body observables, focusing on the off-diagonal ones, in the eigenstates of the two-dimensional transverse field Ising model. By resolving all symmetries, we relate the onset of quantum chaos to the structure of the matrix elements. In particular, we show that a general result of the theory of random matrices, namely, the value 2 of the ratio of variances (diagonal to off-diagonal) of the matrix elements of Hermitian operators, occurs in the quantum chaotic regime. Furthermore, we explore the behavior of the off-diagonal matrix elements of observables as a function of the eigenstate energy differences, and show that it is in accordance with the eigenstate thermalization hypothesis ansatz.
We show that short-range correlations have a dramatic impact on the steady-state phase diagram of quantum driven-dissipative systems. This effect, never observed in equilibrium, follows from the fact that ordering in the steady state is of dynamical origin, and is established only at very long times, whereas in thermodynamic equilibrium it arises from the properties of the (free) energy. To this end, by combining the cluster methods extensively used in equilibrium phase transitions to quantum trajectories and tensor-network techniques, we extend them to nonequilibrium phase transitions in dissipative many-body systems. We analyze in detail a model of spin-1=2 on a lattice interacting through an XYZ Hamiltonian, each of them coupled to an independent environment that induces incoherent spin flips. In the steady-state phase diagram derived from our cluster approach, the location of the phase boundaries and even its topology radically change, introducing reentrance of the paramagnetic phase as compared to the single-site mean field where correlations are neglected. Furthermore, a stability analysis of the cluster mean field indicates a susceptibility towards a possible incommensurate ordering, not present if short-range correlations are ignored.
164 - F. Igloi , G. Roosz , L. Turban 2014
We study the time evolution of the local magnetization in the critical Ising chain in a transverse field after a sudden change of the parameters at a defect. The relaxation of the defect magnetization is algebraic and the corresponding exponent, which is a continuous function of the defect parameters, is calculated exactly. In finite chains the relaxation is oscillating in time and its form is conjectured on the basis of precise numerical calculations.
We investigate the entanglement dynamics between two distant qubits by analyzing correlations in the quantum Ising model. Starting from the spin system in a paramagnetic regime enforced by the external magnetic field $B$, we then switch on the ferromagnetic spin-spin coupling $J$. Using the large coordination number expansion, we consider two limiting switching regimes: (1) adiabatic, which monitors the evolution of the ground state through the quantum transition to an ordered state; and (2) instantaneous (quench) which monitors instead the propagation of quantum fluctuations and simulates the generation of long range correlations. In particular, we find that quantum fluctuations propagate with twice the group speed of excitations in the equilibrium state of the system.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا