No Arabic abstract
Magnetic clouds (MCs) are the interplanetary counterpart of coronal magnetic flux ropes. They can provide valuable information to reveal the flux rope characteristics at their eruption stage in the corona, which are unable to be explored in situ at present. In this paper, we make a comprehensive survey of the average iron charge state (<Q>Fe) distributions inside 96 MCs for solar cycle 23 using ACE (Advanced Composition Explorer) data. As the <Q>Fe in the solar wind are typically around 9+ to 11+, the Fe charge state is defined as high when the <Q>Fe is larger than 12+, which implies the existence of a considerable amount of Fe ions with high charge states (e.g., geq 16+). The statistical results show that the <Q>Fe distributions of 92 (~ 96%) MCs can be classified into four groups with different characteristics. In group A (11 MCs), the <Q>Fe shows a bimodal distribution with both peaks higher than 12+. Group B (4 MCs) presents a unimodal distribution of <Q>Fe with its peak higher than 12+. In groups C (29 MCs) and D (48 MCs), the <Q>Fe remains higher and lower than 12+ throughout ACE passage through the MC, respectively. Possible explanations to these distributions are discussed.
Similar to the Sun, other stars shed mass and magnetic flux via ubiquitous quasi-steady wind and episodic stellar coronal mass ejections (CMEs). We investigate the mass loss rate via solar wind and CMEs as a function of solar magnetic variability represented in terms of sunspot number and solar X-ray background luminosity. We estimate the contribution of CMEs to the total solar wind mass flux in the ecliptic and beyond, and its variation over different phases of the solar activity cycles. The study exploits the number of sunspots observed, coronagraphic observations of CMEs near the Sun by SOHO/LASCO, in situ observations of the solar wind at 1 AU by WIND, and GOES X-ray flux during solar cycle 23 and 24. We note that the X-ray background luminosity, occurrence rate of CMEs and ICMEs, solar wind mass flux, and associated mass loss rates from the Sun do not decrease as strongly as the sunspot number from the maximum of solar cycle 23 to the next maximum. Our study confirms a true physical increase in CME activity relative to the sunspot number in cycle 24. We show that the CME occurrence rate and associated mass loss rate can be better predicted by X-ray background luminosity than the sunspot number. The solar wind mass loss rate which is an order of magnitude more than the CME mass loss rate shows no obvious dependency on cyclic variation in sunspot number and solar X-ray background luminosity. These results have implications to the study of solar-type stars.
Large solar flares and eruptions may influence remote regions through perturbations in the outer-atmospheric magnetic field, leading to causally related events outside of the primary or triggering eruptions that are referred to as sympathetic events. We quantify the occurrence of sympathetic events using the full-disk observations by the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory associated with all flares of GOES class M5 or larger from 01 May 2010 through 31 December 2014. Using a superposed-epoch analysis, we find an increase in the rate of flares, filament eruptions, and substantial sprays and surges more than 20 degrees away from the primary flares within the first four hours at a significance of 1.8 standard deviations. We also find that the rate of distant events drops by two standard deviations, or a factor of 1.2, when comparing intervals between 4 hours and 24 hours before and after the start times of the primary large flares. We discuss the evidence for the concluding hypothesis that the gradual evolution leading to the large flare and the impulsive release of the energy in that flare both contribute to the destabilization of magnetic configurations in distant active regions and quiet-Sun areas. These effects appear to leave distant regions, in an ensemble sense, in a more stable state, so that fewer energetic events happen for at least a day following large energetic events.
We analyze in situ measurements of solar wind velocity obtained by the Advanced Composition Explorer (ACE) spacecraft during the solar activity cycle 23. We calculated a robust complexity measure, the permutation entropy (S) of solar wind time series at different phases of a solar activity cycle. The permutation entropy measure is first tested on the known dynamical data before its application to solar wind time series. It is observed that complexity of solar wind velocity fluctuations at 1 AU shows hysteresis phenomenon while following the ascending and descending phases of the activity cycle. This indicates the presence of multistability in the dynamics governing the solar wind velocity over a solar activity cycle.
The Suns polar magnetic fields change their polarity near the maximum of sunspot activity. We analyzed the polarity reversal epochs in Solar Cycles 21 to 24. There was a triple reversal in the N-hemisphere in Solar Cycle 24 and single reversals in the rest of cases. Epochs of the polarity reversal from measurements of the Wilcox Solar Observatory (WSO) are compared with ones when the reversals were completed in the N- and S-hemispheres. The reversal times were compared with hemispherical sunspot activity and with the Heliospheric Current Sheet (HCS) tilts, too. It was found that reversals occurred at the epoch of the sunspot activity maximum in Cycles 21 and 23, and after the corresponding maxima in Cycles 22 and 24, and one-two years after maximal HCS tilts calculated in WSO. Reversals in Solar Cycles 21, 22, 23, and 24 were completed first in the N-hemisphere and then in the S-hemisphere after 0.6, 1.1, 0.7, and 0.9 years, respectively. The polarity inversion in the near-polar latitude range pm(55-90)^circ occurred from 0.5 to 2.0 years earlier that the times when the reversals were completed in corresponding hemisphere. Using the maximal smoothed WSO polar field as precursor we estimated that amplitude of Solar Cycle 25 will reach 116 pm 12 in values of smoothed monthly sunspot numbers and will be comparable with the current cycle amplitude equaled to 116.4.
This review article summarizes the advancement in the studies of Earth-affecting solar transients in the last decade that encompasses most of solar cycle 24. The Sun Earth is an integrated physical system in which the space environment of the Earth sustains continuous influence from mass, magnetic field and radiation energy output of the Sun in varying time scales from minutes to millennium. This article addresses short time scale events, from minutes to days that directly cause transient disturbances in the Earth space environment and generate intense adverse effects on advanced technological systems of human society. Such transient events largely fall into the following four types: (1) solar flares, (2) coronal mass ejections (CMEs) including their interplanetary counterparts ICMEs, (3) solar energetic particle (SEP) events, and (4) stream interaction regions (SIRs) including corotating interaction regions (CIRs). In the last decade, the unprecedented multi viewpoint observations of the Sun from space, enabled by STEREO Ahead/Behind spacecraft in combination with a suite of observatories along the Sun-Earth lines, have provided much more accurate and global measurements of the size, speed, propagation direction and morphology of CMEs in both 3-D and over a large volume in the heliosphere. Several advanced MHD models have been developed to simulate realistic CME events from the initiation on the Sun until their arrival at 1 AU. Much progress has been made on detailed kinematic and dynamic behaviors of CMEs, including non-radial motion, rotation and deformation of CMEs, CME-CME interaction, and stealth CMEs and problematic ICMEs. The knowledge about SEPs has also been significantly improved.