Do you want to publish a course? Click here

Large Bragg Reflection from One-Dimensional Chains of Trapped Atoms Near a Nanoscale Waveguide

124   0   0.0 ( 0 )
 Added by Julien Laurat
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report experimental observations of large Bragg reflection from arrays of cold atoms trapped near a one-dimensional nanoscale waveguide. By using an optical lattice in the evanescent field surrounding a nanofiber with a period nearly commensurate with the resonant wavelength, we observe a reflectance of up to 75% for the guided mode. Each atom behaves as a partially-reflecting mirror and an ordered chain of about 2000 atoms is sufficient to realize an efficient Bragg mirror. Measurements of the reflection spectra as a function of the lattice period and the probe polarization are reported. The latter shows the effect of the chiral character of nanoscale waveguides on this reflection. The ability to control photon transport in 1D waveguides coupled to spin systems would enable novel quantum network capabilities and the study of many-body effects emerging from long-range interactions.

rate research

Read More

The coupling of atomic arrays and one-dimensional subwavelength waveguides gives rise to in- teresting photon transport properties, such as recent experimental demonstrations of large Bragg reflection and paves the way for a variety of potential applications in the field of quantum non-linear optics. Here, we present a theoretical analysis for the process of single-photon scattering in this configuration using a full microscopic approach. Based on this formalism, we analyze the spectral dependencies for different scattering channels from either ordered or disordered arrays. The de- veloped approach is entirely applicable for a single-photon scattering from a quasi-one-dimensional array of multilevel atoms with degenerate ground state energy structure. Our approach provides an important framework for including not only Rayleigh but also Raman channels in the microscopic description of the cooperative scattering process.
We study the cooperative optical coupling between regularly spaced atoms in a one-dimensional waveguide using decompositions to subradiant and superradiant collective excitation eigenmodes, direct numerical solutions, and analytical transfer-matrix methods. We illustrate how the spectrum of transmitted light through the waveguide including the emergence of narrow Fano resonances can be understood by the resonance features of the eigenmodes. We describe a method based on superradiant and subradiant modes to engineer the optical response of the waveguide and to store light. The stopping of light is obtained by transferring an atomic excitation to a subradiant collective mode with the zero radiative resonance linewidth by controlling the level shift of an atom in the waveguide. Moreover, we obtain an exact analytic solution for the transmitted light through the waveguide for the case of a regular lattice of atoms and provide a simple description how the light transmission may present large resonance shifts when the lattice spacing is close, but not exactly equal, to half of the wavelength of the light. Experimental imperfections such as fluctuations of the positions of the atoms and loss of light from the waveguide are easily quantified in the numerical simulations, which produce the natural result that the optical response of the atomic array tends toward the response of a gas with random atomic positions.
We dispersively interface an ensemble of one thousand atoms trapped in the evanescent field surrounding a tapered optical nanofiber. This method relies on the azimuthally-asymmetric coupling of the ensemble with the evanescent field of an off-resonant probe beam, transmitted through the nanofiber. The resulting birefringence and dispersion are significant; we observe a phase shift per atom of $sim$,1,mrad at a detuning of six times the natural linewidth, corresponding to an effective resonant optical density per atom of 0.027. Moreover, we utilize this strong dispersion to non-destructively determine the number of atoms.
We study the strong coupling between photons and atoms that can be achieved in an optical nanofiber geometry when the interaction is dispersive. While the Purcell enhancement factor for spontaneous emission into the guided mode does not reach the strong-coupling regime for individual atoms, one can obtain high cooperativity for ensembles of a few thousand atoms due to the tight confinement of the guided modes and constructive interference over the entire chain of trapped atoms. We calculate the dyadic Greens function, which determines the scattering of light by atoms in the presence of the fiber, and thus the phase shift and polarization rotation induced on the guided light by the trapped atoms. The Greens function is related to a full Heisenberg-Langevin treatment of the dispersive response of the quantized field to tensor polarizable atoms. We apply our formalism to quantum nondemolition (QND) measurement of the atoms via polarimetry. We study shot-noise-limited detection of atom number for atoms in a completely mixed spin state and the squeezing of projection noise for atoms in clock states. Compared with squeezing of atomic ensembles in free space, we capitalize on unique features that arise in the nanofiber geometry including anisotropy of both the intensity and polarization of the guided modes. We use a first principles stochastic master equation to model the squeezing as function of time in the presence of decoherence due to optical pumping. We find a peak metrological squeezing of ~5 dB is achievable with current technology for ~2500 atoms trapped 180 nm from the surface of a nanofiber with radius a=225 nm.
We demonstrate experimentally that spontaneous parametric down-conversion in an AlGaAs semiconductor Bragg reflection waveguide can make for paired photons highly entangled in the polarization degree of freedom at the telecommunication wavelength of 1550 nm. The pairs of photons show visibility higher than 90% in several polarization bases and violate a Clauser-Horne-Shimony-Holt Bell-like inequality by more than 3 standard deviations. This represents a significant step toward the realization of efficient and versatile self pumped sources of entangled photon pairs on-chip.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا