Do you want to publish a course? Click here

Characterising Strong Lensing Galaxy Clusters using the Millennium-XXL and MOKA simulations

110   0   0.0 ( 0 )
 Added by Carlo Giocoli Dr
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we investigate the strong lensing statistics in galaxy clusters. We extract dark matter haloes from the Millennium-XXL simulation, compute their Einstein radius distribution, and find a very good agreement with Monte Carlo predictions produced with the MOKA code. The distribution of the Einstein radii is well described by a log-normal distribution, with a considerable fraction of the largest systems boosted by different projection effects. We discuss the importance of substructures and triaxiality in shaping the size of the critical lines for cluster size haloes. We then model and interpret the different deviations, accounting for the presence of a Bright Central Galaxy (BCG) and two different stellar mass density profiles. We present scaling relations between weak lensing quantities and the size of the Einstein radii. Finally we discuss how sensible is the distribution of the Einstein radii on the cosmological parameters {Omega}_M-{sigma}_8 finding that cosmologies with higher {Omega}_M and {sigma}_8 possess a large sample of strong lensing clusters. The Einstein radius distribution may help distinguish Planck13 and WMAP7 cosmology at 3{sigma}.



rate research

Read More

We present an axially symmetric formula to calculate the probability of finding gravitational arcs in galaxy clusters, being induced by their massive dark matter haloes, as a function of clusters redshifts and virial masses. The formula includes the ellipticity of the clusters dark matter potential by using a pseudo-elliptical approximation. The probabilities are calculated and compared for two dark-matter halo profiles, the Navarro, Frenk and White (NFW) and the Non-Singular-Isothermal-Sphere (NSIS). We demonstrate the power of our formulation through a Kolmogorov-Smirnov (KS) test on the strong lensing statistics of an X-ray bright sample of low redshift Abell clusters. This KS test allows to establish limits on the values of the concentration parameter for the NFW profile ($c_Delta$) and the core radius for the NSIS profile (rc), which are related to the lowest cluster redshift ($z_{rm cut}$) where strong arcs can be observed. For NFW dark matter profiles, we infer cluster haloes with concentrations that are consistent to those predicted by $Lambda$CDM simulations. As for NSIS dark matter profiles, we find only upper limits for the clusters core radii and thus do not rule out a purely SIS model. For alternative mass profiles, our formulation provides constraints through $z_{rm cut}$ on the parameters that control the concentration of mass in the inner region of the clusters haloes. We find that $z_{rm cut}$ is expected to lie in the 0.0--0.2 redshift, highlighting the need to include very low-$z$ clusters in samples to study the clusters mass profiles.
135 - Scott T. Kay 2011
We have exploited the large-volume Millennium Gas cosmological N-body hydrodynamics simulations to study the SZ cluster population at low and high redshift, for three models with varying gas physics. We confirm previous results using smaller samples that the intrinsic (spherical) Y_{500}-M_{500} relation has very little scatter (sigma_{log_{10}Y}~0.04), is insensitive to cluster gas physics and evolves to redshift one in accord with self-similar expectations. Our pre-heating and feedback models predict scaling relations that are in excellent agreement with the recent analysis from combined Planck and XMM-Newton data by the Planck Collaboration. This agreement is largely preserved when r_{500} and M_{500} are derived using the hydrostatic mass proxy, Y_{X,500}, albeit with significantly reduced scatter (sigma_{log_{10}Y}~0.02), a result that is due to the tight correlation between Y_{500} and Y_{X,500}. Interestingly, this assumption also hides any bias in the relation due to dynamical activity. We also assess the importance of projection effects from large-scale structure along the line-of-sight, by extracting cluster Y_{500} values from fifty simulated 5x5 square degree sky maps. Once the (model-dependent) mean signal is subtracted from the maps we find that the integrated SZ signal is unbiased with respect to the underlying clusters, although the scatter in the (cylindrical) Y_{500}-M_{500} relation increases in the pre-heating case, where a significant amount of energy was injected into the intergalactic medium at high redshift. Finally, we study the hot gas pressure profiles to investigate the origin of the SZ signal and find that the largest contribution comes from radii close to r_{500} in all cases. The profiles themselves are well described by generalised Navarro, Frenk & White profiles but there is significant cluster-to-cluster scatter.
Discovery of strongly-lensed gravitational wave (GW) sources will unveil binary compact objects at higher redshifts and lower intrinsic luminosities than is possible without lensing. Such systems will yield unprecedented constraints on the mass distribution in galaxy clusters, measurements of the polarization of GWs, tests of General Relativity, and constraints on the Hubble parameter. Excited by these prospects, and intrigued by the presence of so-called heavy black holes in the early detections by LIGO-Virgo, we commenced a search for strongly-lensed GWs and possible electromagnetic counterparts in the latter stages of the second LIGO observing run (O2). Here, we summarise our calculation of the detection rate of strongly-lensed GWs, describe our review of BBH detections from O1, outline our observing strategy in O2, summarize our follow-up observations of GW170814, and discuss the future prospects of detection.
109 - Alex Smith 2017
Future galaxy surveys require realistic mock catalogues to understand and quantify systematics in order to make precise cosmological measurements. We present a halo lightcone catalogue and halo occupation distribution (HOD) galaxy catalogue built using the Millennium-XXL (MXXL) simulation. The halo catalogue covers the full sky, extending to z = 2 with a mass resolution of ~1e11 Msun/h . We use this to build a galaxy catalogue, which has an r-band magnitude limit of r < 20.0, with a median redshift of z~0.2. A Monte Carlo HOD method is used to assign galaxies to the halo lightcone catalogue, and we evolve the HODs to reproduce a target luminosity function; by construction, the luminosity function of galaxies in the mock is in agreement with the Sloan Digital Sky Survey (SDSS) at low redshifts and the Galaxy and Mass Assembly (GAMA) survey at high redshifts. A Monte Carlo method is used to assign a 0.1(g-r) colour to each galaxy, and the colour distribution of galaxies at different redshifts agrees with measurements from GAMA. The clustering of galaxies in the mock for galaxies in different magnitude and redshift bins is in good agreement with measurements from SDSS and GAMA, and the colour-dependent clustering is in reasonable agreement. We show that the baryon acoustic oscillation (BAO) can be measured in the mock catalogue, and the redshift space distortions (RSDs) are in agreement with measurements from SDSS, illustrating that this catalogue will be useful for upcoming surveys.
The generation of simulated convergence maps is of key importance in fully exploiting weak lensing by Large Scale Structure (LSS) from which cosmological parameters can be derived. In this paper we present an extension of the PINOCCHIO code which produces catalogues of dark matter haloes so that it is capable of simulating weak lensing by LSS. Like WL-MOKA, the method starts with a random realisation of cosmological initial conditions, creates a halo catalogue and projects it onto the past-light-cone, and paints in haloes assuming parametric models for the mass density distribution within them. Large scale modes that are not accounted for by the haloes are constructed using linear theory. We discuss the systematic errors affecting the convergence power spectra when Lagrangian Perturbation Theory at increasing order is used to displace the haloes within PINOCCHIO, and how they depend on the grid resolution. Our approximate method is shown to be very fast when compared to full ray-tracing simulations from an N-Body run and able to recover the weak lensing signal, at different redshifts, with a few percent accuracy. It also allows for quickly constructing weak lensing covariance matrices, complementing PINOCCHIOs ability of generating the cluster mass function and galaxy clustering covariances and thus paving the way for calculating cross covariances between the different probes. This work advances these approximate methods as tools for simulating and analysing surveys data for cosmological purposes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا