Do you want to publish a course? Click here

Sunyaev-Zeldovich clusters in Millennium Gas simulations

127   0   0.0 ( 0 )
 Added by Scott T. Kay
 Publication date 2011
  fields Physics
and research's language is English
 Authors Scott T. Kay




Ask ChatGPT about the research

We have exploited the large-volume Millennium Gas cosmological N-body hydrodynamics simulations to study the SZ cluster population at low and high redshift, for three models with varying gas physics. We confirm previous results using smaller samples that the intrinsic (spherical) Y_{500}-M_{500} relation has very little scatter (sigma_{log_{10}Y}~0.04), is insensitive to cluster gas physics and evolves to redshift one in accord with self-similar expectations. Our pre-heating and feedback models predict scaling relations that are in excellent agreement with the recent analysis from combined Planck and XMM-Newton data by the Planck Collaboration. This agreement is largely preserved when r_{500} and M_{500} are derived using the hydrostatic mass proxy, Y_{X,500}, albeit with significantly reduced scatter (sigma_{log_{10}Y}~0.02), a result that is due to the tight correlation between Y_{500} and Y_{X,500}. Interestingly, this assumption also hides any bias in the relation due to dynamical activity. We also assess the importance of projection effects from large-scale structure along the line-of-sight, by extracting cluster Y_{500} values from fifty simulated 5x5 square degree sky maps. Once the (model-dependent) mean signal is subtracted from the maps we find that the integrated SZ signal is unbiased with respect to the underlying clusters, although the scatter in the (cylindrical) Y_{500}-M_{500} relation increases in the pre-heating case, where a significant amount of energy was injected into the intergalactic medium at high redshift. Finally, we study the hot gas pressure profiles to investigate the origin of the SZ signal and find that the largest contribution comes from radii close to r_{500} in all cases. The profiles themselves are well described by generalised Navarro, Frenk & White profiles but there is significant cluster-to-cluster scatter.



rate research

Read More

The masses of galaxy clusters are a key tool to constrain cosmology through the physics of large-scale structure formation and accretion. Mass estimates based on X-ray and Sunyaev--Zeldovich measurements have been found to be affected by the contribution of non-thermal pressure components, due e.g. to kinetic gas energy. The characterization of possible ordered motions (e.g. rotation) of the intra-cluster medium could be important to recover cluster masses accurately. We update the study of gas rotation in clusters through the maps of the kinetic Sunyaev--Zeldovich effect, using a large sample of massive synthetic galaxy clusters ($ M_{vir} > 5times 10^{14} h^{-1}$M$_odot$ at $z~=~0 $) from MUSIC high-resolution simulations. We select few relaxed objects showing peculiar rotational features, as outlined in a companion work. To verify whether it is possible to reconstruct the expected radial profile of the rotational velocity, we fit the maps to a theoretical model accounting for a specific rotational law, referred as the vp2b model. We find that our procedure allows to recover the parameters describing the gas rotational velocity profile within two standard deviations, both with and without accounting for the bulk velocity of the cluster. The amplitude of the temperature distortion produced by the rotation is consistent with theoretical estimates found in the literature, and it is of the order of 23 per cent of the maximum signal produced by the cluster bulk motion. We also recover the bulk velocity projected on the line of sight consistently with the simulation true value.
We present gas constraints from Sunyaev-Zeldovich (SZ) effect measurements in a sample of eleven X-ray and infrared (IR) selected galaxy clusters at z >=1, using data from the Sunyaev-Zeldovich Array (SZA). The cylindrically integrated Compton-y parameter, Y , is calculated by fitting the data to a two-parameter gas pressure profile. Where possible, we also determine the temperature of the hot intra-cluster plasma from Chandra and XMM-Newton data, and constrain the gas mass within the same aperture (r_2500 ) as Y . The SZ effect is detected in the clusters for which the X-ray data indicate gas masses above ~ 10^13 Msun, including XMMU J2235-2557 at redshift z = 1.39, which to date is one of the most distant clusters detected using the SZ effect. None of the IR-selected targets are detected by the SZA measurements, indicating low gas masses for these objects. For these and the four other undetected clusters, we quote upper limits on Y and Mgas_SZ , with the latter derived from scaling relations calibrated with lower redshift clusters. We compare the constraints on Y and X-ray derived gas mass Mgas_X-ray to self-similar scaling relations between these observables determined from observations of lower redshift clusters, finding consistency given the measurement error.
The pairwise kinematic Sunyaev-Zeldovich (kSZ) signal from galaxy clusters is a probe of their line-of-sight momenta, and thus a potentially valuable source of cosmological information. In addition to the momenta, the amplitude of the measured signal depends on the properties of the intra-cluster gas and observational limitations such as errors in determining cluster centers and redshifts. In this work we simulate the pairwise kSZ signal of clusters at z<1, using the output from a cosmological N-body simulation and including the properties of the intra-cluster gas via a model that can be varied in post-processing. We find that modifications to the gas profile due to star formation and feedback reduce the pairwise kSZ amplitude of clusters by ~50%, relative to the naive gas traces mass assumption. We demonstrate that mis-centering can reduce the overall amplitude of the pairwise kSZ signal by up to 10%, while redshift errors can lead to an almost complete suppression of the signal at small separations. We confirm that a high-significance detection is expected from the combination of data from current-generation, high-resolution CMB experiments, such as the South Pole Telescope, and cluster samples from optical photometric surveys, such as the Dark Energy Survey. Furthermore, we forecast that future experiments such as Advanced ACTPol in conjunction with data from the Dark Energy Spectroscopic Instrument will yield detection significances of at least 20{sigma}, and up to 57{sigma} in an optimistic scenario. Our simulated maps are publicly available at: http://www.hep.anl.gov/cosmology/ksz.html
The joint likelihood of observable cluster signals reflects the astrophysical evolution of the coupled baryonic and dark matter components in massive halos, and its knowledge will enhance cosmological parameter constraints in the coming era of large, multi-wavelength cluster surveys. We present a computational study of intrinsic covariance in cluster properties using halo populations derived from Millennium Gas Simulations (MGS). The MGS are re-simulations of the original 500 Mpc/h Millennium Simulation performed with gas dynamics under two different physical treatments: shock heating driven by gravity only (GO) and a second treatment with cooling and preheating (PH). We examine relationships among structural properties and observable X-ray and Sunyaev-Zeldovich (SZ) signals for samples of thousands of halos with M_200 > 5 times 10^{13} Msun/h and z < 2. While the X-ray scaling behavior of PH model halos at low-redshift offers a good match to local clusters, the model exhibits non-standard features testable with larger surveys, including weakly running slopes in hot gas observable--mass relations and ~10% departures from self-similar redshift evolution for 10^14 Msun/h halos at redshift z ~ 1. We find that the form of the joint likelihood of signal pairs is generally well-described by a multivariate, log-normal distribution, especially in the PH case which exhibits less halo substructure than the GO model. At fixed mass and epoch, joint deviations of signal pairs display mainly positive correlations, especially the thermal SZ effect paired with either hot gas fraction (r=0.88/0.69 for PH/GO at z=0) or X-ray temperature (r=0.62/0.83). We discuss halo mass selection by signal pairs, and find a minimum mass scatter of 4% in the PH model by combining thermal SZ and gas fraction measurements.
We present imaging simulations of the Sunyaev-Zeldovich effect of galaxy clusters for the Atacama Large Millimeter/submillimeter Array (ALMA) including the Atacama Compact Array (ACA). In its most compact configuration at 90GHz, ALMA will resolve the intracluster medium with an effective angular resolution of 5 arcsec. It will provide a unique probe of shock fronts and relativistic electrons produced during cluster mergers at high redshifts, that are hard to spatially resolve by current and near-future X-ray detectors. Quality of image reconstruction is poor with the 12m array alone but improved significantly by adding ACA; expected sensitivity of the 12m array based on the thermal noise is not valid for the Sunyaev-Zeldovich effect mapping unless accompanied by an ACA observation of at least equal duration. The observations above 100 GHz will become excessively time-consuming owing to the narrower beam size and the higher system temperature. On the other hand, significant improvement of the observing efficiency is expected once Band 1 is implemented in the future.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا