No Arabic abstract
We report the results of an extensive search in the AGILE data for a gamma-ray counterpart of the LIGO gravitational wave event GW150914. Currently in spinning mode, AGILE has the potential of covering with its gamma-ray instrument 80 % of the sky more than 100 times a day. It turns out that AGILE came within a minute from the event time of observing the accessible GW150914 localization region. Interestingly, the gamma-ray detector exposed about 65 % of this region during the 100 s time intervals centered at -100 s and +300 s from the event time. We determine a 2-sigma flux upper limit in the band 50 MeV - 10 GeV, $UL = 1.9 times 10^{-8} rm , erg , cm^{-2} , s^{-1}$ obtained about 300 s after the event. The timing of this measurement is the fastest ever obtained for GW150914, and significantly constrains the electromagnetic emission of a possible high-energy counterpart. We also carried out a search for a gamma-ray precursor and delayed emission over timescales ranging from minutes to days: in particular, we obtained an optimal exposure during the interval -150 / -30 s. In all these observations, we do not detect a significant signal associated with GW150914. We do not reveal the weak transient source reported by Fermi-GBM 0.4 s after the event time. However, even though a gamma-ray counterpart of the GW150914 event was not detected, the prospects for future AGILE observations of gravitational wave sources are decidedly promising.
With an instantaneous view of 70% of the sky, the Fermi Gamma-ray Burst Monitor (GBM) is an excellent partner in the search for electromagnetic counterparts to gravitational wave (GW) events. GBM observations at the time of the Laser Interferometer Gravitational-wave Observatory (LIGO) event GW150914 reveal the presence of a weak transient above 50 keV, 0.4~s after the GW event, with a false alarm probability of 0.0022 (2.9$sigma$). This weak transient lasting 1 s was not detected by any other instrument and does not appear connected with other previously known astrophysical, solar, terrestrial, or magnetospheric activity. Its localization is ill-constrained but consistent with the direction of GW150914. The duration and spectrum of the transient event are consistent with a weak short Gamma-Ray Burst arriving at a large angle to the direction in which Fermi was pointing, where the GBM detector response is not optimal. If the GBM transient is associated with GW150914, this electromagnetic signal from a stellar mass black hole binary merger is unexpected. We calculate a luminosity in hard X-ray emission between 1~keV and 10~MeV of $1.8^{+1.5}_{-1.0} times 10^{49}$~erg~s$^{-1}$. Future joint observations of GW events by LIGO/Virgo and Fermi GBM could reveal whether the weak transient reported here is a plausible counterpart to GW150914 or a chance coincidence, and will further probe the connection between compact binary mergers and short Gamma-Ray Bursts.
The era of gravitational-wave astronomy began on 14 September 2015, when the LIGO Scientific Collaboration detected the merger of two $sim 30 M_odot$ black holes at a distance of $sim 400$ Mpc. This event has facilitated qualitatively new tests of gravitational theories, and has also produced exciting information about the astrophysical origin of black hole binaries. In this review we discuss the implications of this event for gravitational physics and astrophysics, as well as the expectations for future detections. In brief: (1) because the spins of the black holes could not be measured accurately and because mergers are not well calculated for modified theories of gravity, the current analysis of GW150914 does not place strong constraints on gravity variants that change only the generation of gravitational waves, but (2) it does strongly constrain alterations of the propagation of gravitational waves and alternatives to black holes. Finally, (3) many astrophysical models for the origin of heavy black hole binaries such as the GW150914 system are in play, but a reasonably robust conclusion that was reached even prior to the detection is that the environment of such systems needs to have a relatively low abundance of elements heavier than helium.
The detection of the first gravitational wave (GW) transient GW150914 prompted an extensive campaign of follow-up observations at all wavelengths. Although no dedicated XMM-Newton observations have been performed, the satellite passed through the GW150914 error box during normal operations. Here we report the analysis of the data taken during these satellite slews performed two hours and two weeks after the GW event. Our data cover 1.1 square degrees and 4.8 square degrees of the final GW localization region. No credible X-ray counterpart to GW150914 is found down to a sensitivity of 6E-13 erg/cm2/s in the 0.2-2 keV band. Nevertheless, these observations show the great potential of XMM-Newton slew observations for the search of the electromagnetic counterparts of GW events. A series of adjacent slews performed in response to a GW trigger would take <1.5 days to cover most of the typical GW credible region. We discuss this scenario and its prospects for detecting the X-ray counterpart of future GW detections.
We use the Pearson cross-correlation statistic proposed by Liu and Jackson, and employed by Creswell et al., to look for statistically significant correlations between the LIGO Hanford and Livingston detectors at the time of the binary black hole merger GW150914. We compute this statistic for the calibrated strain data released by LIGO, using both the residuals provided by LIGO and using our own subtraction of a maximum-likelihood waveform that is constructed to model binary black hole mergers in general relativity. To assign a significance to the values obtained, we calculate the cross-correlation of both simulated Gaussian noise and data from the LIGO detectors at times during which no detection of gravitational waves has been claimed. We find that after subtracting the maximum likelihood waveform there are no statistically significant correlations between the residuals of the two detectors at the time of GW150914.
The LIGO/Virgo Collaboration (LVC) detected on 2017 January 4, a significant gravitational-wave (GW) event (now named GW170104). We report in this Letter the main results obtained from the analysis of hard X-ray and gamma-ray data of the AGILE mission that repeatedly observed the GW170104 localization region (LR). At the LVC detection time $T_0$ AGILE observed about 36% of the LR. The gamma-ray imaging detector did not reveal any significant emission in the energy range 50 MeV--30 GeV. Furthermore, no significant gamma-ray transients were detected in the LR that was repeatedly exposed over timescales of minutes, hours, and days. We also searched for transient emission using data near $T_0$ of the omnidirectional detector MCAL operating in the energy band 0.4--100 MeV. A refined analysis of MCAL data shows the existence of a weak event (that we call E2) with a signal-to-noise ratio of $4.4,sigma$ lasting about 32 ms and occurring $0.46,pm,0.05 ,rm s$ before $T_0$. A study of the MCAL background and of the false-alarm rate of E2 leads to the determinination of a post-trial significance between $2.4,sigma$ and $2.7,sigma$ for a temporal coincidence with GW170104. We note that E2 has characteristics similar to those detected from the weak precursor of the short GRB 090510. The candidate event E2 is worth consideration for simultaneous detection by other satellites. If associated with GW170104, it shows emission in the MeV band of a short burst preceding the final coalescence by 0.46 sec and involving $sim 10^{-7}$ of the total rest mass energy of the system.