Do you want to publish a course? Click here

Fermi GBM Observations of LIGO Gravitational Wave event GW150914

183   0   0.0 ( 0 )
 Added by Valerie Connaughton
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

With an instantaneous view of 70% of the sky, the Fermi Gamma-ray Burst Monitor (GBM) is an excellent partner in the search for electromagnetic counterparts to gravitational wave (GW) events. GBM observations at the time of the Laser Interferometer Gravitational-wave Observatory (LIGO) event GW150914 reveal the presence of a weak transient above 50 keV, 0.4~s after the GW event, with a false alarm probability of 0.0022 (2.9$sigma$). This weak transient lasting 1 s was not detected by any other instrument and does not appear connected with other previously known astrophysical, solar, terrestrial, or magnetospheric activity. Its localization is ill-constrained but consistent with the direction of GW150914. The duration and spectrum of the transient event are consistent with a weak short Gamma-Ray Burst arriving at a large angle to the direction in which Fermi was pointing, where the GBM detector response is not optimal. If the GBM transient is associated with GW150914, this electromagnetic signal from a stellar mass black hole binary merger is unexpected. We calculate a luminosity in hard X-ray emission between 1~keV and 10~MeV of $1.8^{+1.5}_{-1.0} times 10^{49}$~erg~s$^{-1}$. Future joint observations of GW events by LIGO/Virgo and Fermi GBM could reveal whether the weak transient reported here is a plausible counterpart to GW150914 or a chance coincidence, and will further probe the connection between compact binary mergers and short Gamma-Ray Bursts.

rate research

Read More

The weak transient detected by the Fermi Gamma-ray Burst Monitor (GBM) 0.4 s after GW150914 has generated much speculation regarding its possible association with the black-hole binary merger. Investigation of the GBM data by Connaughton et al. (2016) revealed a source location consistent with GW150914 and a spectrum consistent with a weak, short Gamma-Ray Burst. Greiner et al. (2016) present an alternative technique for fitting background-limited data in the low-count regime, and call into question the spectral analysis and the significance of the detection of GW150914-GBM presented in Connaughton et al. (2016). The spectral analysis of Connaughton et al. (2016) is not subject to the limitations of the low-count regime noted by Greiner et al. (2016). We find Greiner et al. (2016) used an inconsistent source position and did not follow the steps taken in Connaughton et al. (2016) to mitigate the statistical shortcomings of their software when analyzing this weak event. We use the approach of Greiner et al. (2016) to verify that our original spectral analysis is not biased. The detection significance of GW150914-GBM is established empirically, with a False Alarm Rate (FAR) of $sim 10^{-4}$~Hz. A post-trials False Alarm Probability (FAP) of $2.2 times 10^{-3}$ ($2.9 sigma$) of this transient being associated with GW150914 is based on the proximity in time to the GW event of a transient with that FAR. The FAR and the FAP are unaffected by the spectral analysis that is the focus of Greiner et al. (2016).
The Fermi Large Area Telescope (LAT) has an instantaneous field of view covering $sim 1/5$ of the sky and completes a survey of the full sky every ~3 hours. It provides a continuous, all-sky survey of high-energy gamma-rays, enabling searches for transient phenomena over timescales from milliseconds to years. Among these phenomena could be electromagnetic counterparts to gravitational wave sources. In this paper, we present a detailed study of the LAT observations relevant to Laser Interferometer Gravitational-wave Observatory (LIGO) event GW150904 (Abbott et al. 2016), which is the first direct detection of gravitational waves and has been interpreted as due to coalescence of two stellar-mass black holes. The localization region for GW150904 was outside the LAT field of view at the time of the gravitational wave signal. However, as part of routine survey observations, the LAT observed the entire LIGO localization region within ~70 minutes of the trigger, and thus enabled a comprehensive search for a gamma-ray counterpart to GW150904. The study of the LAT data presented here did not find any potential counterparts to GW150904, but it did provide limits on the presence of a transient counterpart above 100 MeV on timescales of hours to days over the entire GW150904 localization region.
We report the results of an extensive search in the AGILE data for a gamma-ray counterpart of the LIGO gravitational wave event GW150914. Currently in spinning mode, AGILE has the potential of covering with its gamma-ray instrument 80 % of the sky more than 100 times a day. It turns out that AGILE came within a minute from the event time of observing the accessible GW150914 localization region. Interestingly, the gamma-ray detector exposed about 65 % of this region during the 100 s time intervals centered at -100 s and +300 s from the event time. We determine a 2-sigma flux upper limit in the band 50 MeV - 10 GeV, $UL = 1.9 times 10^{-8} rm , erg , cm^{-2} , s^{-1}$ obtained about 300 s after the event. The timing of this measurement is the fastest ever obtained for GW150914, and significantly constrains the electromagnetic emission of a possible high-energy counterpart. We also carried out a search for a gamma-ray precursor and delayed emission over timescales ranging from minutes to days: in particular, we obtained an optimal exposure during the interval -150 / -30 s. In all these observations, we do not detect a significant signal associated with GW150914. We do not reveal the weak transient source reported by Fermi-GBM 0.4 s after the event time. However, even though a gamma-ray counterpart of the GW150914 event was not detected, the prospects for future AGILE observations of gravitational wave sources are decidedly promising.
The era of gravitational-wave astronomy began on 14 September 2015, when the LIGO Scientific Collaboration detected the merger of two $sim 30 M_odot$ black holes at a distance of $sim 400$ Mpc. This event has facilitated qualitatively new tests of gravitational theories, and has also produced exciting information about the astrophysical origin of black hole binaries. In this review we discuss the implications of this event for gravitational physics and astrophysics, as well as the expectations for future detections. In brief: (1) because the spins of the black holes could not be measured accurately and because mergers are not well calculated for modified theories of gravity, the current analysis of GW150914 does not place strong constraints on gravity variants that change only the generation of gravitational waves, but (2) it does strongly constrain alterations of the propagation of gravitational waves and alternatives to black holes. Finally, (3) many astrophysical models for the origin of heavy black hole binaries such as the GW150914 system are in play, but a reasonably robust conclusion that was reached even prior to the detection is that the environment of such systems needs to have a relatively low abundance of elements heavier than helium.
118 - E. Troja , A. M. Read , A. Tiengo 2016
The detection of the first gravitational wave (GW) transient GW150914 prompted an extensive campaign of follow-up observations at all wavelengths. Although no dedicated XMM-Newton observations have been performed, the satellite passed through the GW150914 error box during normal operations. Here we report the analysis of the data taken during these satellite slews performed two hours and two weeks after the GW event. Our data cover 1.1 square degrees and 4.8 square degrees of the final GW localization region. No credible X-ray counterpart to GW150914 is found down to a sensitivity of 6E-13 erg/cm2/s in the 0.2-2 keV band. Nevertheless, these observations show the great potential of XMM-Newton slew observations for the search of the electromagnetic counterparts of GW events. A series of adjacent slews performed in response to a GW trigger would take <1.5 days to cover most of the typical GW credible region. We discuss this scenario and its prospects for detecting the X-ray counterpart of future GW detections.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا