Do you want to publish a course? Click here

What are the megahertz peaked-spectrum sources?

85   0   0.0 ( 0 )
 Added by Rocco Coppejans
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Megahertz peaked-spectrum (MPS) sources have spectra that peak at frequencies below 1 GHz in the observers frame and are believed to be radio-loud active galactic nuclei (AGN). We recently presented a new method to search for high-redshift AGN by identifying unusually compact MPS sources. In this paper, we present European VLBI Network (EVN) observations of 11 MPS sources which we use to determine their sizes and investigate the nature of the sources with ~10 mas resolution. Of the 11 sources, we detect nine with the EVN. Combining the EVN observations with spectral and redshift information, we show that the detected sources are all AGN with linear sizes smaller than 1.1 kpc and are likely young. This shows that low-frequency colour-colour diagrams are an easy and efficient way of selecting small AGN and explains our high detection fraction (82%) in comparison to comparable surveys. Finally we argue that the detected sources are all likely compact symmetric objects and that none of the sources are blazars.



rate research

Read More

We present a 324.5MHz image of the NOAO Bootes field that was made using Very Large Array (VLA) P-band observations. The image has a resolution of 5.6x5.1arcsec, a radius of $2.05^circ$ and a central noise of ~0.2mJybeam. Both the resolution and noise of the image are an order of magnitude better than what was previously available at this frequency and will serve as a valuable addition to the already extensive multiwavelength data that are available for this field. The final source catalogue contains 1370 sources and has a median 325 to 1400MHz spectral index of -0.72. Using a radio colour-colour diagram of the unresolved sources in our catalogue, we identify 33 megahertz peaked-spectrum (MPS) sources. Based on the turnover frequency linear size relation for the gigahertz peaked-spectrum (GPS) and compact steep-spectrum (CSS) sources, we expect that the MPS sources that are compact on scales of tens of milliarcseconds should be young radio loud active galactic nuclei at high (z>2) redshifts. Of the 33 MPS sources, we were able to determine redshifts for 24, with an average redshift of 1.3. Given that five of the sources are at z>2, that the four faint sources for which we could not find redshifts are likely at even higher redshifts and that we could only select sources that are compact on a scale of ~5arcsec, there is encouraging evidence that the MPS method can be used to search for high-redshift sources.
Compact steep-spectrum (CSS) and peaked spectrum (PS) radio sources are compact, powerful radio sources. The multi-frequency observational properties and current theories are reviewed with emphasis on developments since the earlier review of ODea (1998). There are three main hypotheses for the nature of PS and CSS sources. (1) The PS sources might be very young radio galaxies which will evolve into CSS sources on their way to becoming large radio galaxies. (2) The PS and CSS sources might be compact because they are confined (and enhanced in radio power) by interaction with dense gas in their environments. (3) Alternately, the PS sources might be transient or intermittent sources. Each of these hypotheses may apply to individual objects. The relative number in each population will have significant implications for the radio galaxy paradigm. Proper motion studies over long time baselines have helped determine hotspot speeds for over three dozen sources and establish that these are young objects. Multifrequency polarization observations have demonstrated that many CSS/PS sources are embedded in a dense interstellar medium and vigorously interacting with it. The detection of emission line gas aligned with the radio source, and blue-shifted HI absorption and [OIII] emission lines indicates that AGN feedback is present in these objects -- possibly driven by the radio source. CSS/PS sources with evidence of episodic AGN over a large range of time-scales have been discussed. The review closes with a discussion of open questions and prospects for the future.
We present a sample of 1,483 sources that display spectral peaks between 72 MHz and 1.4 GHz, selected from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. The GLEAM survey is the widest fractional bandwidth all-sky survey to date, ideal for identifying peaked-spectrum sources at low radio frequencies. Our peaked-spectrum sources are the low frequency analogues of gigahertz-peaked spectrum (GPS) and compact-steep spectrum (CSS) sources, which have been hypothesized to be the precursors to massive radio galaxies. Our sample more than doubles the number of known peaked-spectrum candidates, and 95% of our sample have a newly characterized spectral peak. We highlight that some GPS sources peaking above 5 GHz have had multiple epochs of nuclear activity, and demonstrate the possibility of identifying high redshift ($z > 2$) galaxies via steep optically thin spectral indices and low observed peak frequencies. The distribution of the optically thick spectral indices of our sample is consistent with past GPS/CSS samples but with a large dispersion, suggesting that the spectral peak is a product of an inhomogeneous environment that is individualistic. We find no dependence of observed peak frequency with redshift, consistent with the peaked-spectrum sample comprising both local CSS sources and high-redshift GPS sources. The 5 GHz luminosity distribution lacks the brightest GPS and CSS sources of previous samples, implying that a convolution of source evolution and redshift influences the type of peaked-spectrum sources identified below 1 GHz. Finally, we discuss sources with optically thick spectral indices that exceed the synchrotron self-absorption limit.
105 - M. Orienti 2015
Compact steep spectrum (CSS) and GHz-peaked spectrum (GPS) radio sources represent a large fraction of the extragalactic objects in flux density-limited samples. They are compact, powerful radio sources whose synchrotron peak frequency ranges between a few hundred MHz to several GHz. CSS and GPS radio sources are currently interpreted as objects in which the radio emission is in an early evolutionary stage. In this contribution I review the radio properties and the physical characteristics of this class of radio sources, and the interplay between their radio emission and the ambient medium of the host galaxy.
We present Very Long Baseline Interferometry observations of a faint and low-luminosity ($L_{rm 1.4 GHz} < 10^{27}~mbox{W Hz}^{-1}$) Gigahertz-Peaked Spectrum (GPS) and Compact Steep Spectrum (CSS) sample. We select eight sources from deep radio observations that have radio spectra characteristic of a GPS or CSS source and an angular size of $theta lesssim 2$ arcsec, and detect six of them with the Australian Long Baseline Array. We determine their linear sizes, and model their radio spectra using Synchrotron Self Absorption (SSA) and Free Free Absorption (FFA) models. We derive statistical model ages, based on a fitted scaling relation, and spectral ages, based on the radio spectrum, which are generally consistent with the hypothesis that GPS and CSS sources are young and evolving. We resolve the morphology of one CSS source with a radio luminosity of $10^{25}~mbox{W Hz}^{-1}$, and find what appear to be two hotspots spanning 1.7 kpc. We find that our sources follow the turnover-linear size relation, and that both homogenous SSA and an inhomogeneous FFA model can account for the spectra with observable turnovers. All but one of the FFA models do not require a spectral break to account for the radio spectrum, while all but one of the alternative SSA and power law models do require a spectral break to account for the radio spectrum. We conclude that our low-luminosity sample is similar to brighter samples in terms of their spectral shape, turnover frequencies, linear sizes, and ages, but cannot test for a difference in morphology.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا