Do you want to publish a course? Click here

Radio properties of Compact Steep Spectrum and GHz-Peaked Spectrum radio sources

106   0   0.0 ( 0 )
 Added by Monica Orienti
 Publication date 2015
  fields Physics
and research's language is English
 Authors M. Orienti




Ask ChatGPT about the research

Compact steep spectrum (CSS) and GHz-peaked spectrum (GPS) radio sources represent a large fraction of the extragalactic objects in flux density-limited samples. They are compact, powerful radio sources whose synchrotron peak frequency ranges between a few hundred MHz to several GHz. CSS and GPS radio sources are currently interpreted as objects in which the radio emission is in an early evolutionary stage. In this contribution I review the radio properties and the physical characteristics of this class of radio sources, and the interplay between their radio emission and the ambient medium of the host galaxy.



rate research

Read More

Compact steep-spectrum (CSS) and peaked spectrum (PS) radio sources are compact, powerful radio sources. The multi-frequency observational properties and current theories are reviewed with emphasis on developments since the earlier review of ODea (1998). There are three main hypotheses for the nature of PS and CSS sources. (1) The PS sources might be very young radio galaxies which will evolve into CSS sources on their way to becoming large radio galaxies. (2) The PS and CSS sources might be compact because they are confined (and enhanced in radio power) by interaction with dense gas in their environments. (3) Alternately, the PS sources might be transient or intermittent sources. Each of these hypotheses may apply to individual objects. The relative number in each population will have significant implications for the radio galaxy paradigm. Proper motion studies over long time baselines have helped determine hotspot speeds for over three dozen sources and establish that these are young objects. Multifrequency polarization observations have demonstrated that many CSS/PS sources are embedded in a dense interstellar medium and vigorously interacting with it. The detection of emission line gas aligned with the radio source, and blue-shifted HI absorption and [OIII] emission lines indicates that AGN feedback is present in these objects -- possibly driven by the radio source. CSS/PS sources with evidence of episodic AGN over a large range of time-scales have been discussed. The review closes with a discussion of open questions and prospects for the future.
148 - J. Holt 2008
I will review some of the developments in studies of the host galaxy properties of Compact Steep Spectrum (CSS) and GigaHertz-Peaked Spectrum (GPS) radio sources. In contrast to previous reviews structured around observational technique, I will discuss the host galaxy properties in terms of morphology, stellar content and warm gas properties and discuss how compact, young radio-loud AGN are key objects for understanding galaxy evolution.
136 - A. Labiano 2007
AIMS: Search for star formation regions in the hosts of potentially young radio galaxies (Gigahertz Peaked Spectrum and Compact Steep Spectrum sources). METHODS: Near-UV imaging with the Hubble Space Telescope Advanced Camera for Surveys.} RESULTS: We find near-UV light which could be the product of recent star formation in eight of the nine observed sources, though other explanations are not currently ruled out. The UV luminosities of the GPS and CSS sources are similar to those of a sample of nearby large scale radio galaxies. Stellar population synthesis models are consistent with a burst of recent star formation occuring before the formation of the radio source. However, observations at other wavelengths and colors are needed to definitively establish the nature of the observed UV light. In the CSS sources 1443+77 and 1814-637 the near-UV light is aligned with and is co-spatial with the radio source. We suggest that in these sources the UV light is produced by star formation triggered and/or enhanced by the radio source.
We present Very Long Baseline Interferometry observations of a faint and low-luminosity ($L_{rm 1.4 GHz} < 10^{27}~mbox{W Hz}^{-1}$) Gigahertz-Peaked Spectrum (GPS) and Compact Steep Spectrum (CSS) sample. We select eight sources from deep radio observations that have radio spectra characteristic of a GPS or CSS source and an angular size of $theta lesssim 2$ arcsec, and detect six of them with the Australian Long Baseline Array. We determine their linear sizes, and model their radio spectra using Synchrotron Self Absorption (SSA) and Free Free Absorption (FFA) models. We derive statistical model ages, based on a fitted scaling relation, and spectral ages, based on the radio spectrum, which are generally consistent with the hypothesis that GPS and CSS sources are young and evolving. We resolve the morphology of one CSS source with a radio luminosity of $10^{25}~mbox{W Hz}^{-1}$, and find what appear to be two hotspots spanning 1.7 kpc. We find that our sources follow the turnover-linear size relation, and that both homogenous SSA and an inhomogeneous FFA model can account for the spectra with observable turnovers. All but one of the FFA models do not require a spectral break to account for the radio spectrum, while all but one of the alternative SSA and power law models do require a spectral break to account for the radio spectrum. We conclude that our low-luminosity sample is similar to brighter samples in terms of their spectral shape, turnover frequencies, linear sizes, and ages, but cannot test for a difference in morphology.
256 - D. Dallacasa 2021
We present results on global very long baseline interferometry (VLBI) observations at 327 MHz of eighteen compact steep-spectrum (CSS) and GHz-peaked spectrum (GPS) radio sources from the 3C and the Peacock & Wall catalogues. About 80 per cent of the sources have a double/triple structure. The radio emission at 327 MHz is dominated by steep-spectrum extended structures, while compact regions become predominant at higher frequencies. As a consequence, we could unambiguously detect the core region only in three sources, likely due to self-absorption affecting its emission at this low frequency. Despite their low surface brightness, lobes store the majority of the source energy budget, whose correct estimate is a key ingredient in tackling the radio source evolution. Low-frequency VLBI observations able to disentangle the lobe emission from that of other regions are therefore the best way to infer the energetics of these objects. Dynamical ages estimated from energy budget arguments provide values between 2x10^3 and 5x10^4 yr, in agreement with the radiative ages estimated from the fit of the integrated synchrotron spectrum, further supporting the youth of these objects. A discrepancy between radiative and dynamical ages is observed in a few sources where the integrated spectrum is dominated by hotspots. In this case the radiative age likely represents the time spent by the particles in these regions, rather than the source age.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا