No Arabic abstract
We establish general limits on how precise a parameter, e.g. frequency or the strength of a magnetic field, can be estimated with the aid of full and fast quantum control. We consider uncorrelated noisy evolutions of N qubits and show that fast control allows to fully restore the Heisenberg scaling (~1/N^2) for all rank-one Pauli noise except dephasing. For all other types of noise the asymptotic quantum enhancement is unavoidably limited to a constant-factor improvement over the standard quantum limit (~1/N) even when allowing for the full power of fast control. The latter holds both in the single-shot and infinitely-many repetitions scenarios. However, even in this case allowing for fast quantum control helps to increase the improvement factor. Furthermore, for frequency estimation with finite resource we show how a parallel scheme utilizing any fixed number of entangled qubits but no fast quantum control can be outperformed by a simple, easily implementable, sequential scheme which only requires entanglement between one sensing and one auxiliary qubit.
We briefly discuss recent experiments on quantum information processing using trapped ions at NIST. A central theme of this work has been to increase our capabilities in terms of quantum computing protocols, but we have also applied the same concepts to improved metrology, particularly in the area of frequency standards and atomic clocks. Such work may eventually shed light on more fundamental issues, such as the quantum measurement problem.
Quantum metrology comprises a set of techniques and protocols that utilize quantum features for parameter estimation which can in principle outperform any procedure based on classical physics. We formulate the quantum metrology in terms of an optimal control problem and apply Pontryagins Maximum Principle to determine the optimal protocol that maximizes the quantum Fisher information for a given evolution time. As the quantum Fisher information involves a derivative with respect to the parameter which one wants to estimate, we devise an augmented dynamical system that explicitly includes gradients of the quantum Fisher information. The necessary conditions derived from Pontryagins Maximum Principle are used to quantify the quality of the numerical solution. The proposed formalism is generalized to problems with control constraints, and can also be used to maximize the classical Fisher information for a chosen measurement.
The impact of measurement imperfections on quantum metrology protocols has been largely ignored, even though these are inherent to any sensing platform in which the detection process exhibits noise that neither can be eradicated, nor translated onto the sensing stage and interpreted as decoherence. In this work, we approach this issue in a systematic manner. Focussing firstly on pure states, we demonstrate how the form of the quantum Fisher information must be modified to account for noisy detection, and propose tractable methods allowing for its approximate evaluation. We then show that in canonical scenarios involving $N$ probes with local measurements undergoing readout noise, the optimal sensitivity dramatically changes its behaviour depending whether global or local control operations are allowed to counterbalance measurement imperfections. In the former case, we prove that the ideal sensitivity (e.g. the Heisenberg scaling) can always be recovered in the asymptotic $N$ limit, while in the latter the readout noise fundamentally constrains the quantum enhancement of sensitivity to a constant factor. We illustrate our findings with an example of an NV-centre measured via the repetitive readout procedure, as well as schemes involving spin-1/2 probes with bit-flip errors affecting their two-outcome measurements, for which we find the input states and control unitary operations sufficient to attain the ultimate asymptotic precision.
Quantum enhancements of precision in metrology can be compromised by system imperfections. These may be mitigated by appropriate optimization of the input state to render it robust, at the expense of making the state difficult to prepare. In this paper, we identify the major sources of imperfection an optical sensor: input state preparation inefficiency, sensor losses, and detector inefficiency. The second of these has received much attention; we show that it is the least damaging to surpassing the standard quantum limit in a optical interferometric sensor. Further, we show that photonic states that can be prepared in the laboratory using feasible resources allow a measurement strategy using photon-number-resolving detectors that not only attains the Heisenberg limit for phase estimation in the absence of losses, but also deliver close to the maximum possible precision in realistic scenarios including losses and inefficiencies. In particular, we give bounds for the trade off between the three sources of imperfection that will allow true quantum-enhanced optical metrology.
Quantum metrology research promises approaches to build new sensors that achieve the ultimate level of precision measurement and perform fundamentally better than modern sensors. Practical schemes that tolerate realistic fabrication imperfections and environmental noise are required in order to realise quantum-enhanced sensors and to enable their real-world application. We have demonstrated the key enabling principles of a practical, loss-tolerant approach to photonic quantum metrology designed to harness all multi-photon components in spontaneous parametric downconversion---a method for generating multiple photons that we show requires no further fundamental state engineering for use in practical quantum metrology. We observe a quantum advantage of 28% in precision measurement of optical phase using the four-photon detection component of this scheme, despite 83% system loss. This opens the way to new quantum sensors based on current quantum-optical capabilities.