Do you want to publish a course? Click here

First Results from the La Silla-QUEST Supernova Survey and the Carnegie Supernova Project

112   0   0.0 ( 0 )
 Added by David Rabinowitz
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The LaSilla/QUEST Variability Survey (LSQ) and the Carnegie Supernova Project (CSP II) are collaborating to discover and obtain photometric light curves for a large sample of low redshift (z < 0.1) Type Ia supernovae. The supernovae are discovered in the LSQ survey using the 1 m ESO Schmidt telescope at the La Silla Observatory with the 10 square degree QUEST camera. The follow-up photometric observations are carried out using the 1 m Swope telescope and the 2.5 m du Pont telescopes at the Las Campanas Observatory. This paper describes the survey, discusses the methods of analyzing the data and presents the light curves for the first 31 Type Ia supernovae obtained in the survey. The SALT 2.4 supernova light curve fitter was used to analyze the photometric data, and the Hubble diagram for this first sample is presented. The measurement errors for these supernovae averaged 4%, and their intrinsic spread was 14%.



rate research

Read More

We present the characterization and initial results from the QUEST-La Silla AGN variability survey. This is an effort to obtain well sampled optical light curves in extragalactic fields with unique multi-wavelength observations. We present photometry obtained from 2010 to 2012 in the XMM-COSMOS field, which was observed over 150 nights using the QUEST camera on the ESO-Schmidt telescope. The survey uses a broadband filter, the $Q$-band, similar to the union of the $g$ and the $r$ filters, achieving an intrinsic photometric dispersion of $0.05$ mag, and a systematic error of $0.05$ mag in the zero-point. Since some detectors of the camera show significant non-linearity, we use a linear correlation to fit the zero-points as a function of the instrumental magnitudes, thus obtaining a good correction to the non-linear behavior of these detectors. We obtain good photometry to an equivalent limiting magnitude of $rsim 20.5$. Studying the optical variability of X-ray detected sources in the XMM-COSMOS field, we find that the survey is $sim75-80$% complete to magnitudes $rsim20$, and $sim67$% complete to a magnitude $rsim21$. The determination and parameterization of the structure function (${SF}_{norm}(tau) = A tau^{gamma}$) of the variable sources shows that most BL AGN are characterized by $A > 0.1$ and $gamma > 0.025$. It is further shown that variable NL AGN and GAL sources occupying the same parameter space in $A$ and $gamma$ are very likely to correspond to obscured or low luminosity AGN. Our samples are, however, small, and we expect to revisit these results using larger samples with longer light curves obtained as part of our ongoing survey.
Stripped-envelope (SE) supernovae (SNe) include H-poor (Type IIb), H-free (Type Ib) and He-free (Type Ic) events thought to be associated with the deaths of massive stars. The exact nature of their progenitors is a matter of debate. Here we present the analysis of the light curves of 34 SE SNe published by the Carnegie Supernova Project (CSP-I), which are unparalleled in terms of photometric accuracy and wavelength range. Light-curve parameters are estimated through the fits of an analytical function and trends are searched for among the resulting fit parameters. We found a tentative correlation between the peak absolute $B$-band magnitude and $Delta m_{15}(B)$, as well as a correlation between the late-time linear slope and $Delta m_{15}$. Making use of the full set of optical and near-IR photometry, combined with robust host-galaxy extinction corrections, bolometric light curves are constructed and compared to both analytic and hydrodynamical models. From the hydrodynamical models we obtained ejecta masses of $1.1-6.2$ $M_{odot}$, $^{56}$Ni masses of $0.03-0.35$ $M_{odot}$, and explosion energies (excluding two SNe Ic-BL) of $0.25-3.0times10^{51}$ erg. Our analysis indicates that adopting $kappa = 0.07$ cm$^{2}$ g$^{-1}$ as the mean opacity serves to be a suitable assumption when comparing Arnett-model results to those obtained from hydrodynamical calculations. We also find that adopting He I and O I line velocities to infer the expansion velocity in He-rich and He-poor SNe, respectively, provides ejecta masses relatively similar to those obtained by using the Fe II line velocities. The inferred ejecta masses are compatible with intermediate mass ($M_{ZAMS} leq 20$ $M_{odot}$) progenitor stars in binary systems for the majority of SE SNe. Furthermore, the majority of our SNe is affected by significant mixing of $^{56}$Ni, particularly in the case of SNe Ic.
606 - Ellie Hadjiyska 2012
We describe the La Silla-QUEST (LSQ) Variability Survey. LSQ is a dedicated wide-field synoptic survey in the Southern Hemisphere, focussing on the discovery and study of transients ranging from low redshift (z < 0.1) SN Ia, Tidal Disruption events, RR Lyr{ae} variables, CVs, Quasars, TNOs and others. The survey utilizes the 1.0-m Schmidt Telescope of the European Southern Observatory at La Silla, Chile, with the large-area QUEST camera, a mosaic of 112 CCDs with field of view of 9.6 square degrees. The LSQ Survey was commissioned in 2009, and is now regularly covering ~1000 square deg per night with a repeat cadence of hours to days. The data are currently processed on a daily basis. We present here a first look at the photometric capabilities of LSQ and we discuss some of the most interesting recent transient detections.
Supernovae are essential to understanding the chemical evolution of the Universe. Type Ia supernovae also provide the most powerful observational tool currently available for studying the expansion history of the Universe and the nature of dark energy. Our basic knowledge of supernovae comes from the study of their photometric and spectroscopic properties. However, the presently available data sets of optical and near-infrared light curves of supernovae are rather small and/or heterogeneous, and employ photometric systems that are poorly characterized. Similarly, there are relatively few supernovae whose spectral evolution has been well sampled, both in wavelength and phase, with precise spectrophotometric observations. The low-redshift portion of the Carnegie Supernova Project (CSP) seeks to remedy this situation by providing photometry and spectrophotometry of a large sample of supernovae taken on telescope/filter/detector systems that are well understood and well characterized. During a five-year program which began in September 2004, we expect to obtain high-precision ugriBVYJHKs light curves and optical spectrophotometry for about 250 supernovae of all types. In this paper we provide a detailed description of the CSP survey observing and data reduction methodology. In addition, we present preliminary photometry and spectra obtained for a few representative supernovae during the first observing campaign.
We use the spectroscopy and homogeneous photometry of 97 Type Ia supernovae obtained by the emph{Carnegie Supernova Project} as well as a subset of 36 Type Ia supernovae presented by Zheng et al. (2018) to examine maximum-light correlations in a four-dimensional (4-D) parameter space: $B$-band absolute magnitude, $M_B$, ion{Si}{2}~$lambda6355$ velocity, vsi, and ion{Si}{2} pseudo-equivalent widths pEW(ion{Si}{2}~$lambda6355$) and pEW(ion{Si}{2}~$lambda5972$). It is shown using Gaussian mixture models (GMMs) that the original four groups in the Branch diagram are well-defined and robust in this parameterization. We find three continuous groups that describe the behavior of our sample in [$M_B$, vsi] space. Extending the GMM into the full 4-D space yields a grouping system that only slightly alters group definitions in the [$M_B$, vsi] projection, showing that most of the clustering information in [$M_B$, vsi] is already contained in the 2-D GMM groupings. However, the full 4-D space does divide group membership for faster objects between core-normal and broad-line objects in the Branch diagram. A significant correlation between $M_B$ and pEW(ion{Si}{2}~$lambda5972$) is found, which implies that Branch group membership can be well-constrained by spectroscopic quantities alone. In general, we find that higher-dimensional GMMs reduce the uncertainty of group membership for objects between the originally defined Branch groups. We also find that the broad-line Branch group becomes nearly distinct with the inclusion of vsi, indicating that this subclass of SNe Ia may be somehow different from the other groups.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا