No Arabic abstract
We construct a model to study the localization properties of nanowires of dopants in silicon (Si) fabricated by precise ionic implantation or STM lithography. Experiments have shown that Ohms law holds in some cases, in apparent defiance to the Anderson localization theory in one dimension. We investigate how valley interference affects the traditional theory of electronic structure of disordered systems. Each isolated donor orbital is realistically described by multi-valley effective mass theory (MV-EMT). We extend this model to describe chains of donors as a linear combination of dopant orbitals. Disorder in donor positioning is taken into account, leading to an intricate disorder distribution of hoppings between nearest neighbor donor sites (donor-donor tunnel coupling) -- an effect of valley interference. The localization length is obtained for phosphorous (P) donor chains from a transfer matrix approach and is further compared with the chain length. We quantitatively determine the impact of uncertainties $delta R$ in the implantation position relative to a target and also compare our results with those obtained without valley interference. We analyse systematically the aimed inter-donor separation dependence ($R_0$) and show that fairly diluted donor chains ($R_0=7.7$ nm) may be as long as 100 nm before the effective onset of Anderson localization, as long as the positioning error is under a lattice parameter ($delta R <0.543$ nm).
We study the properties of the normal modes of a chain of Josephson junctions in the simultaneous presence of disorder and absorption. We consider the superconducting regime of small phase fluctuations and focus on the case where the effects of disorder and absorption can be treated additively. We analyze the frequency shift and the localization length of the modes. We also calculate the distribution of the frequency-dependent impedance of the chain. The distribution is Gaussian if the localization length is long compared to the absorption length; it has a power law tail in the opposite limit.
We consider the dynamics of an electron in an infinite disordered metallic wire. We derive exact expressions for the probability of diffusive return to the starting point in a given time. The result is valid for wires with or without time-reversal symmetry and allows for the possibility of topologically protected conducting channels. In the absence of protected channels, Anderson localization leads to a nonzero limiting value of the return probability at long times, which is approached as a negative power of time with an exponent depending on the symmetry class. When topologically protected channels are present (in a wire of either unitary or symplectic symmetry), the probability of return decays to zero at long time as a power law whose exponent depends on the number of protected channels. Technically, we describe the electron dynamics by the one-dimensional supersymmetric non-linear sigma model. We derive an exact identity that relates any local dynamical correlation function in a disordered wire of unitary, orthogonal, or symplectic symmetry to a certain expectation value in the random matrix ensemble of class AIII, CI, or DIII, respectively. The established exact mapping from one- to zero-dimensional sigma model is very general and can be used to compute any local observable in a disordered wire.
We report the results of an experiment investigating coherence and correlation effects in a system of coupled donors. Two donors are strongly coupled to two leads in a parallel configuration within a nano-wire field effect transistor. By applying a magnetic field we observe interference between two donor-induced Kondo channels, which depends on the Aharonov-Bohm phase picked up by electrons traversing the structure. This results in a non-monotonic conductance as a function of magnetic field and clearly demonstrates that donors can be coupled through a many-body state in a coherent manner. We present a model which shows good qualitative agreement with our data. The presented results add to the general understanding of interference effects in a donor-based correlated system which may allow to create artificial lattices that exhibit exotic many-body excitations.
We observe millisecond spin-flip relaxation times of donor-bound electrons in high-purity n-GaAs . This is three orders of magnitude larger than previously reported lifetimes in n-GaAs . Spin-flip times are measured as a function of magnetic field and exhibit a strong power-law dependence for fields greater than 4 T . This result is in qualitative agreement with previously reported theory and measurements of electrons in quantum dots.
We show that Anderson localization in quasi-one dimensional conductors with ballistic electron dynamics, such as an array of ballistic chaotic cavities connected via ballistic contacts, can be understood in terms of classical electron trajectories only. At large length scales, an exponential proliferation of trajectories of nearly identical classical action generates an abundance of interference terms, which eventually leads to a suppression of transport coefficients. We quantitatively describe this mechanism in two different ways: the explicit description of transition probabilities in terms of interfering trajectories, and an hierarchical integration over fluctuations in the classical phase space of the array cavities.