No Arabic abstract
Cells may control fluctuations in protein levels by means of negative autoregulation, where transcription factors bind DNA sites to repress their own production. Theoretical studies have assumed a single binding site for the repressor, while in most species it is found that multiple binding sites are arranged in clusters. We study a stochastic description of negative autoregulation with multiple binding sites for the repressor. We find that increasing the number of binding sites induces regular bursting of gene products. By tuning the threshold for repression, we show that multiple binding sites can also suppress fluctuations. Our results highlight possible roles for the presence of multiple binding sites of negative autoregulators.
Due to the stochastic nature of biochemical processes, the copy number of any given type of molecule inside a living cell often exhibits large temporal fluctuations. Here, we develop analytic methods to investigate how the noise arising from a bursting input is reshaped by a transport reaction which is either linear or of the Michaelis-Menten type. A slow transport rate smoothes out fluctuations at the output end and minimizes the impact of bursting on the downstream cellular activities. In the context of gene expression in eukaryotic cells, our results indicate that transcriptional bursting can be substantially attenuated by the transport of mRNA from nucleus to cytoplasm. Saturation of the transport mediators or nuclear pores contributes further to the noise reduction. We suggest that the mRNA transport should be taken into account in the interpretation of relevant experimental data on transcriptional bursting.
Information transmission in biological signaling circuits has often been described using the metaphor of a noise filter. Cellular systems need accurate, real-time data about their environmental conditions, but the biochemical reaction networks that propagate, amplify, and process signals work with noisy representations of that data. Biology must implement strategies that not only filter the noise, but also predict the current state of the environment based on information delayed due to the finite speed of chemical signaling. The idea of a biochemical noise filter is actually more than just a metaphor: we describe recent work that has made an explicit mathematical connection between signaling fidelity in cellular circuits and the classic theories of optimal noise filtering and prediction that began with Wiener, Kolmogorov, Shannon, and Bode. This theoretical framework provides a versatile tool, allowing us to derive analytical bounds on the maximum mutual information between the environmental signal and the real-time estimate constructed by the system. It helps us understand how the structure of a biological network, and the response times of its components, influences the accuracy of that estimate. The theory also provides insights into how evolution may have tuned enzyme kinetic parameters and populations to optimize information transfer.
Multiple interlinked positive feedback loops shape the stimulus responses of various biochemical systems, such as the cell cycle or intracellular calcium release. Recent studies with simplified models have identified two advantages of coupling fast and slow feedback loops. Namely, this dual-time structure enables a fast response while enhancing resistances of responses and bistability to stimulus noise. We now find that in addition: 1) the dual-time structure confers resistance to internal noise due to molecule number fluctuations, and 2) model variants with altered coupling, which better represent some specific systems, share all the above advantages. We develop a similar bistable model with a fast autoactivation loop coupled to a slow loop, which minimally represents positive feedback that may be essential for long-term synaptic potentiation (LTP). The advantages of fast response and noise resistance carry over to this model. Empirically, LTP develops resistance to reversal over ~1 h. The model suggests this resistance may result from increased amounts of synaptic kinases involved in positive feedback.
We introduce a minimal model description for the dynamics of transcriptional regulatory networks. It is studied within a mean-field approximation, i.e., by deterministic odes representing the reaction kinetics, and by stochastic simulations employing the Gillespie algorithm. We elucidate the different results both approaches can deliver, depending on the network under study, and in particular depending on the level of detail retained in the respective description. Two examples are addressed in detail: the repressilator, a transcriptional clock based on a three-gene network realized experimentally in E. coli, and a bistable two-gene circuit under external driving, a transcriptional network motif recently proposed to play a role in cellular development.
A modified quantum teleportation protocol broadens the scope of the classical forbidden-interval theorems for stochastic resonance. The fidelity measures performance of quantum communication. The sender encodes the two classical bits for quantum teleportation as weak bipolar subthreshold signals and sends them over a noisy classical channel. Two forbidden-interval theorems provide a necessary and sufficient condition for the occurrence of the nonmonotone stochastic resonance effect in the fidelity of quantum teleportation. The condition is that the noise mean must fall outside a forbidden interval related to the detection threshold and signal value. An optimal amount of classical noise benefits quantum communication when the sender transmits weak signals, the receiver detects with a high threshold, and the noise mean lies outside the forbidden interval. Theorems and simulations demonstrate that both finite-variance and infinite-variance noise benefit the fidelity of quantum teleportation.