No Arabic abstract
Due to the stochastic nature of biochemical processes, the copy number of any given type of molecule inside a living cell often exhibits large temporal fluctuations. Here, we develop analytic methods to investigate how the noise arising from a bursting input is reshaped by a transport reaction which is either linear or of the Michaelis-Menten type. A slow transport rate smoothes out fluctuations at the output end and minimizes the impact of bursting on the downstream cellular activities. In the context of gene expression in eukaryotic cells, our results indicate that transcriptional bursting can be substantially attenuated by the transport of mRNA from nucleus to cytoplasm. Saturation of the transport mediators or nuclear pores contributes further to the noise reduction. We suggest that the mRNA transport should be taken into account in the interpretation of relevant experimental data on transcriptional bursting.
There is increasing evidence that protein binding to specific sites along DNA can activate the reading out of genetic information without coming into direct physical contact with the gene. There also is evidence that these distant but interacting sites are embedded in a liquid droplet of proteins which condenses out of the surrounding solution. We argue that droplet-mediated interactions can account for crucial features of gene regulation only if the droplet is poised at a non-generic point in its phase diagram. We explore a minimal model that embodies this idea, show that this model has a natural mechanism for self-tuning, and suggest direct experimental tests.
In this article, we study the kinetics of reversible ligand binding to receptors on a spherical cell surface using a self-consistent stochastic theory. Binding, dissociation, diffusion and rebinding of ligands are incorporated into the theory in a systematic manner. We derive explicitly the time evolution of the ligand-bound receptor fraction p(t) in various regimes . Contrary to the commonly accepted view, we find that the well-known Berg-Purcell scaling for the association rate is modified as a function of time. Specifically, the effective on-rate changes non-monotonically as a function of time and equals the intrinsic rate at very early as well as late times, while being approximately equal to the Berg-Purcell value at intermediate times. The effective dissociation rate, as it appears in the binding curve or measured in a dissociation experiment, is strongly modified by rebinding events and assumes the Berg-Purcell value except at very late times, where the decay is algebraic and not exponential. In equilibrium, the ligand concentration everywhere in the solution is the same and equals its spatial mean, thus ensuring that there is no depletion in the vicinity of the cell. Implications of our results for binding experiments and numerical simulations of ligand-receptor systems are also discussed.
Trajectories of endosomes inside living eukaryotic cells are highly heterogeneous in space and time and diffuse anomalously due to a combination of viscoelasticity, caging, aggregation and active transport. Some of the trajectories display switching between persistent and anti-persistent motion while others jiggle around in one position for the whole measurement time. By splitting the ensemble of endosome trajectories into slow moving sub-diffusive and fast moving super-diffusive endosomes, we analyzed them separately. The mean squared displacements and velocity auto-correlation functions confirm the effectiveness of the splitting methods. Applying the local analysis, we show that both ensembles are characterized by a spectrum of local anomalous exponents and local generalized diffusion coefficients. Slow and fast endsomes have exponential distributions of local anomalous exponents and power law distributions of generalized diffusion coefficients. This suggests that heterogeneous fractional Brownian motion is an appropriate model for both fast and slow moving endosomes. This article is part of a Special Issue entitled: Recent Advances In Single-Particle Tracking: Experiment and Analysis edited by Janusz Szwabinski and Aleksander Weron.
Efficient protein synthesis depends on the availability of charged tRNA molecules. With 61 different codons, shifting the balance among the tRNA abundances can lead to large changes in the protein synthesis rate. Previous theoretical work has asked about the optimization of these abundances, and there is some evidence that regulatory mechanisms bring cells close to this optimum, on average. We formulate the tradeoff between the precision of control and the efficiency of synthesis, asking for the maximum entropy distribution of tRNA abundances consistent with a desired mean rate of protein synthesis. Our analysis, using data from E. coli, indicates that reasonable synthesis rates are consistent only with rather low entropies, so that the cells regulatory mechanisms must encode a large amount of information about the correct tRNA abundances.
Filopodia are bundles of actin filaments that extend out ahead of the leading edge of a crawling cell to probe its upcoming environment. {it In vitro} experiments [D. Vignjevic {it et al.}, J. Cell Biol. {bf 160}, 951 (2003)] have determined the minimal ingredients required for the formation of filopodia from the dendritic-like morphology of the leading edge. We model these experiments using kinetic aggregation equations for the density of growing bundle tips. In mean field, we determine the bundle size distribution to be broad for bundle sizes smaller than a characteristic bundle size above which the distribution decays exponentially. Two-dimensional simulations incorporating both bundling and cross-linking measure a bundle size distribution that agrees qualitatively with mean field. The simulations also demonstrate a nonmonotonicity in the radial extent of the dendritic region as a function of capping protein concentration, as was observed in experiments, due to the interplay between percolation and the ratcheting of growing filaments off a spherical obstacle.