Do you want to publish a course? Click here

Study of Growth Properties of InAs Islands on Nucleation Sites Defined by Focused Ion Beam

90   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

This work describes morphological and crystalline properties of the InAs islands grown on templates created by focused ion beam (FIB) on indium phosphide (InP) substrates. Regular arrangements of shallow holes are created on the InP (001) surfaces, acting as preferential nucleation sites for InAs islands grown by Metal-Organic Vapor Phase Epitaxy. Ion doses ranging from $10^{15}$ to $10^{16}$ $Ga^{+}$/$cm^{2}$ were used and islands were grown for two sub-monolayer coverages. We observe the formation of clusters in the inner surfaces of the FIB produced cavities and show that for low doses templates the nanostructures are mainly coherent while templates created with large ion doses lead to the growth of incoherent islands with larger island density. The modified island growth is described by a simple model based on the surface potential and the net adatom flow to the cavities. We observe that obtained morphologies result from a competition between coarsening and coalescence mechanisms.



rate research

Read More

We have prepared iron microwires in a combination of focused electron beam induced deposition (FEBID) and autocatalytic growth from the iron pentacarbonyl, Fe(CO)5, precursor gas under UHV conditions. The electrical transport properties of the microwires were investigated and it was found that the temperature dependence of the longitudinal resistivity (rhoxx) shows a typical metallic behaviour with a room temperature value of about 88 micro{Omega} cm. In order to investigate the magnetotransport properties we have measured the isothermal Hall-resistivities in the range between 4.2 K and 260 K. From these measurements positive values for the ordinary and the anomalous Hall coefficients were derived. The relation between anomalous Hall resistivity (rhoAN) and longitudinal resistivity is quadratic, rhoAN rho^2 xx, revealing an intrinsic origin of the anomalous Hall effect. Finally, at low temperature in the transversal geometry a negative magnetoresistance of about 0.2 % was measured.
Recent advances in focused ion beam technology have enabled high-resolution, direct-write nanofabrication using light ions. Studies with light ions to date have, however, focused on milling of materials where sub-surface ion beam damage does not inhibit device performance. Here we report on direct-write milling of single crystal diamond using a focused beam of oxygen ions. Material quality is assessed by Raman and luminescence analysis, and reveals that the damage layer generated by oxygen ions can be removed by nonintrusive post-processing methods such as localised electron beam induced chemical etching.
Focused ion beam (FIB) microscopy suffers from source shot noise - random variation in the number of incident ions in any fixed dwell time - along with random variation in the number of detected secondary electrons per incident ion. This multiplicity of sources of randomness increases the variance of the measurements and thus worsens the trade-off between incident ion dose and image accuracy. Time-resolved sensing combined with maximum likelihood estimation from the resulting sets of measurements greatly reduces the effect of source shot noise. Through Fisher information analysis and Monte Carlo simulations, the reduction in mean-squared error or reduction in required dose is shown to be by a factor approximately equal to the secondary electron yield. Experiments with a helium ion microscope (HIM) are consistent with the analyses and suggest accuracy improvement for a fixed source dose, or reduced source dose for a desired imaging accuracy, by a factor of about 3.
A focused ion beam is used to mill side holes in air-silica structured fibres. By way of example, side holes are introduced in two types of air-structured fibres (1) a photonic crystal four-ring fibre and (2) a 6-hole single ring step index structured fibre.
We present a detailed x-ray diffraction study of the strain in InAs/GaSb superlattices grown by molecular beam epitaxy. The superlattices were grown with either InSb or GaAs interfaces. We show that the superlattice morphology, either planar or nanostructured, is dependent on the chemical bonds at the heterointerfaces. In both cases, the misfit strain has been determined for the superlattice layers and the interfaces. We also determined how the magnitude and sign of this strain is crucial in governing the morphology of the superlattice. Our analysis suggests that the growth of self-assembled nanostructures may be extended to many systems generally thought to have too small a lattice mismatch.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا