Do you want to publish a course? Click here

A Generalized Labeled Multi-Bernoulli Filter for Maneuvering Targets

304   0   0.0 ( 0 )
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

A multiple maneuvering target system can be viewed as a Jump Markov System (JMS) in the sense that the target movement can be modeled using different motion models where the transition between the motion models by a particular target follows a Markov chain probability rule. This paper describes a Generalized Labelled Multi-Bernoulli (GLMB) filter for tracking maneuvering targets whose movement can be modeled via such a JMS. The proposed filter is validated with two linear and nonlinear maneuvering target tracking examples.



rate research

Read More

The generalized labeled multi-Bernoulli (GLMB) is a family of tractable models that alleviates the limitations of the Poisson family in dynamic Bayesian inference of point processes. In this paper, we derive closed form expressions for the void probability functional and the Cauchy-Schwarz divergence for GLMBs. The proposed analytic void probability functional is a necessary and sufficient statistic that uniquely characterizes a GLMB, while the proposed analytic Cauchy-Schwarz divergence provides a tractable measure of similarity between GLMBs. We demonstrate the use of both results on a partially observed Markov decision process for GLMBs, with Cauchy-Schwarz divergence based reward, and void probability constraint.
Urban intersections put high demands on fully automated vehicles, in particular, if occlusion occurs. In order to resolve such and support vehicles in unclear situations, a popular approach is the utilization of additional information from infrastructure-based sensing systems. However, a widespread use of such systems is circumvented by their complexity and thus, high costs. Within this paper, a generic interface is proposed, which enables a huge variety of sensors to be connected. The sensors are only required to measure very few features of the objects, if multiple distributed sensors with different viewing directions are available. Furthermore, a Labeled Multi-Bernoulli (LMB) filter is presented, which can not only handle such measurements, but also infers missing object information about the objects extents. The approach is evaluated on simulations and demonstrated on a real-world infrastructure setup.
65 - Hua Lan , Jirong Ma , Zengfu Wang 2019
This paper considers the problem of detecting and tracking multiple maneuvering targets, which suffers from the intractable inference of high-dimensional latent variables that include target kinematic state, target visibility state, motion mode-model association, and data association. A unified message passing algorithm that combines belief propagation (BP) and mean-field (MF) approximation is proposed for simplifying the intractable inference. By assuming conjugate-exponential priors for target kinematic state, target visibility state, and motion mode-model association, the MF approximation decouples the joint inference of target kinematic state, target visibility state, motion mode-model association into individual low-dimensional inference, yielding simple message passing update equations. The BP is exploited to approximate the probabilities of data association events since it is compatible with hard constraints. Finally, the approximate posterior probability distributions are updated iteratively in a closed-loop manner, which is effective for dealing with the coupling issue between the estimations of target kinematic state and target visibility state and decisions on motion mode-model association and data association. The performance of the proposed algorithm is demonstrated by comparing with the well-known multiple maneuvering target tracking algorithms, including interacting multiple model joint probabilistic data association, interacting multiple model hypothesis-oriented multiple hypothesis tracker and multiple model generalized labeled multi-Bernoulli.
172 - Bo Yang , Yiwen Lu , Xu Yang 2021
Drift control is significant to the safety of autonomous vehicles when there is a sudden loss of traction due to external conditions such as rain or snow. It is a challenging control problem due to the presence of significant sideslip and nearly full saturation of the tires. In this paper, we focus on the control of drift maneuvers following circular paths with either fixed or moving centers, subject to change in the tire-ground interaction, which are common training tasks for drift enthusiasts and can therefore be used as benchmarks of the performance of drift control. In order to achieve the above tasks, we propose a novel hierarchical control architecture which decouples the curvature and center control of the trajectory. In particular, an outer loop stabilizes the center by tuning the target curvature, and an inner loop tracks the curvature using a feedforward/feedback controller enhanced by an $mathcal{L}_1$ adaptive component. The hierarchical architecture is flexible because the inner loop is task-agnostic and adaptive to changes in tire-road interaction, which allows the outer loop to be designed independent of low-level dynamics, opening up the possibility of incorporating sophisticated planning algorithms. We implement our control strategy on a simulation platform as well as on a 1/10 scale Radio-Control~(RC) car, and both the simulation and experiment results illustrate the effectiveness of our strategy in achieving the above described set of drift maneuvering tasks.
This paper provides a scalable, multi-sensor measurement adaptive track initiation technique for labeled random finite set filters. A naive construction of the multi-sensor measurement adaptive birth set leads to an exponential number of newborn components in the number of sensors. A truncation criterion is established for a multi-sensor measurement-generated labeled multi-Bernoulli random finite set that provably minimizes the L1-truncation error in the generalized labeled multi-Bernoulli posterior distribution. This criterion is used to construct a Gibbs sampler that produces a truncated measurement-generated labeled multi-Bernoulli birth distribution with quadratic complexity in the number of sensors. A closed form solution of the conditional sampling distribution assuming linear (or linearized) Gaussian likelihoods is provided, alongside an approximate solution using Monte Carlo importance sampling. Multiple simulation results are provided to verify the efficacy of the truncation criterion, as well as the reduction in complexity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا