Do you want to publish a course? Click here

Radiation Pressure Acceleration: the factors limiting maximum attainable ion energy

122   0   0.0 ( 0 )
 Added by Stepan Bulanov
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Radiation pressure acceleration (RPA) is a highly efficient mechanism of laser-driven ion acceleration, with with near complete transfer of the laser energy to the ions in the relativistic regime. However, there is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. The tightly focused laser pulses have group velocities smaller than the vacuum light speed, and, since they offer the high intensity needed for the RPA regime, it is plausible that group velocity effects would manifest themselves in the experiments involving tightly focused pulses and thin foils. However, in this case, finite spot size effects are important, and another limiting factor, the transverse expansion of the target, may dominate over the group velocity effect. As the laser pulse diffracts after passing the focus, the target expands accordingly due to the transverse intensity profile of the laser. Due to this expansion, the areal density of the target decreases, making it transparent for radiation and effectively terminating the acceleration. The off-normal incidence of the laser on the target, due either to the experimental setup, or to the deformation of the target, will also lead to establishing a limit on maximum ion energy.



rate research

Read More

Radiation Pressure Acceleration relies on high intensity laser pulse interacting with solid target to obtain high maximum energy, quasimonoenergetic ion beams. Either extremely high power laser pulses or tight focusing of laser radiation is required. The latter would lead to the appearance of the maximum attainable ion energy, which is determined by the laser group velocity and is highly influenced by the transverse expansion of the target. Ion acceleration is only possible with target velocities less than the group velocity of the laser. The transverse expansion of the target makes it transparent for radiation, thus reducing the effectiveness of acceleration. Utilization of an external guiding structure for the accelerating laser pulse may provide a way of compensating for the group velocity and transverse expansion effects.
194 - S. M. Weng , M. Murakami , 2014
The generation of fast ion beams in the hole-boring radiation pressure acceleration by intense laser pulses has been studied for targets with different ion components. We find that the oscillation of the longitudinal electric field for accelerating ions can be effectively suppressed by using a two-ion-species target, because fast ions from a two-ion-species target are distributed into more bunches and each bunch bears less charge. Consequently, the energy spread of ion beams generated in the hole-boring radiation pressure acceleration can be greatly reduced down to 3.7% according to our numerical simulation.
141 - S. Kar , K. F. Kakolee , B. Qiao 2012
The acceleration of ions from ultra-thin foils has been investigated using 250 TW, sub-ps laser pulses, focused on target at intensities up to $3times10^{20} Wcm2$. The ion spectra show the appearance of narrow band features for proton and Carbon peaked at higher energy (in the 5-10 MeV/nucleon range) and with significantly higher flux than previously reported. The spectral features, and their scaling with laser and target parameters, provide evidence of a multispecies scenario of Radiation Pressure Acceleration in the Light Sail mode, as confirmed by analytical estimates and 2D Particle In Cell simulations. The scaling indicates that monoenergetic peaks with more than 100 MeV/nucleon energies are obtainable with moderate improvements of the target and laser characteristics, which are within reach of ongoing technical developments.
In the ion acceleration by radiation pressure a transverse inhomogeneity of the electromagnetic pulse results in the displacement of the irradiated target in the off-axis direction limiting achievable ion energy. This effect is described analytically within the framework of the thin foil target model and with the particle-in-cell simulations showing that the maximum energy of accelerated ions decreases while the displacement from the axis of the target initial position increases. The results obtained can be applied for optimization of the ion acceleration by the laser radiation pressure with the mass limited targets.
We present experimental studies on ion acceleration from ultra-thin diamond-like carbon (DLC) foils irradiated by ultra-high contrast laser pulses of energy 0.7 J focussed to peak intensities of 5*10^{19} W/cm^2. A reduction in electron heating is observed when the laser polarization is changed from linear to circular, leading to a pronounced peak in the fully ionized carbon spectrum at the optimum foil thickness of 5.3 nm. Two-dimensional particle-in-cell (PIC) simulations reveal, that those C^{6+} ions are for the first time dominantly accelerated in a phase-stable way by the laser radiation pressure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا