Do you want to publish a course? Click here

Effect of Electromagnetic Pulse Transverse Inhomogeneity on the Ion Acceleration by Radiation Pressure

116   0   0.0 ( 0 )
 Added by Sergei Bulanov V.
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the ion acceleration by radiation pressure a transverse inhomogeneity of the electromagnetic pulse results in the displacement of the irradiated target in the off-axis direction limiting achievable ion energy. This effect is described analytically within the framework of the thin foil target model and with the particle-in-cell simulations showing that the maximum energy of accelerated ions decreases while the displacement from the axis of the target initial position increases. The results obtained can be applied for optimization of the ion acceleration by the laser radiation pressure with the mass limited targets.



rate research

Read More

142 - S. Kar , K. F. Kakolee , B. Qiao 2012
The acceleration of ions from ultra-thin foils has been investigated using 250 TW, sub-ps laser pulses, focused on target at intensities up to $3times10^{20} Wcm2$. The ion spectra show the appearance of narrow band features for proton and Carbon peaked at higher energy (in the 5-10 MeV/nucleon range) and with significantly higher flux than previously reported. The spectral features, and their scaling with laser and target parameters, provide evidence of a multispecies scenario of Radiation Pressure Acceleration in the Light Sail mode, as confirmed by analytical estimates and 2D Particle In Cell simulations. The scaling indicates that monoenergetic peaks with more than 100 MeV/nucleon energies are obtainable with moderate improvements of the target and laser characteristics, which are within reach of ongoing technical developments.
66 - Y. Wan , C. -H. Pai , C. J. Zhang 2016
The transverse stability of the target is crucial for obtaining high quality ion beams using the laser radiation pressure acceleration (RPA) mechanism. In this letter, a theoretical model and supporting two-dimensional (2D) Particle-in-Cell (PIC) simulations are presented to clarify the physical mechanism of the transverse instability observed in the RPA process. It is shown that the density ripples of the target foil are mainly induced by the coupling between the transverse oscillating electrons and the quasi-static ions, a mechanism similar to the transverse two stream instability in the inertial confinement fusion (ICF) research. The predictions of the mode structure and the growth rates from the theory agree well with the results obtained from the PIC simulations in various regimes, indicating the model contains the essence of the underlying physics of the transverse break-up of the target.
We present experimental studies on ion acceleration from ultra-thin diamond-like carbon (DLC) foils irradiated by ultra-high contrast laser pulses of energy 0.7 J focussed to peak intensities of 5*10^{19} W/cm^2. A reduction in electron heating is observed when the laser polarization is changed from linear to circular, leading to a pronounced peak in the fully ionized carbon spectrum at the optimum foil thickness of 5.3 nm. Two-dimensional particle-in-cell (PIC) simulations reveal, that those C^{6+} ions are for the first time dominantly accelerated in a phase-stable way by the laser radiation pressure.
295 - X. F. Shen , B. Qiao , H. He 2018
Scaling laws of ion acceleration in ultrathin foils driven by radiation pressure of intense laser pulses are investigated by theoretical analysis and two-dimensional particle-in-cell simulations. Considering the instabilities are inevitable during laser plasma interaction, the maximum energy of ions should have two contributions: the bulk acceleration driven by radiation pressure and the sheath acceleration in the moving foil reference induced by hot electrons. A theoretical model is proposed to quantitatively explain the results that the cutoff energy and energy spread are larger than the predictions of light sail model, observed in simulations and experiments for a large range of laser and target parameters. Scaling laws derived from this model and supported by the simulation results are verified by the previous experiments.
Radiation pressure acceleration (RPA) is a highly efficient mechanism of laser-driven ion acceleration, with with near complete transfer of the laser energy to the ions in the relativistic regime. However, there is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. The tightly focused laser pulses have group velocities smaller than the vacuum light speed, and, since they offer the high intensity needed for the RPA regime, it is plausible that group velocity effects would manifest themselves in the experiments involving tightly focused pulses and thin foils. However, in this case, finite spot size effects are important, and another limiting factor, the transverse expansion of the target, may dominate over the group velocity effect. As the laser pulse diffracts after passing the focus, the target expands accordingly due to the transverse intensity profile of the laser. Due to this expansion, the areal density of the target decreases, making it transparent for radiation and effectively terminating the acceleration. The off-normal incidence of the laser on the target, due either to the experimental setup, or to the deformation of the target, will also lead to establishing a limit on maximum ion energy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا