Do you want to publish a course? Click here

AccConF: An Access Control Framework for Leveraging In-Network Cached Data in ICNs

166   0   0.0 ( 0 )
 Added by Reza Tourani
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

The fast-growing Internet traffic is increasingly becoming content-based and driven by mobile users, with users more interested in data rather than its source. This has precipitated the need for an information-centric Internet architecture. Research in information-centric networks (ICNs) have resulted in novel architectures, e.g., CCN/NDN, DONA, and PSIRP/PURSUIT; all agree on named data based addressing and pervasive caching as integral design components. With network-wide content caching, enforcement of content access control policies become non-trivial. Each caching node in the network needs to enforce access control policies with the help of the content provider. This becomes inefficient and prone to unbounded latencies especially during provider outages. In this paper, we propose an efficient access control framework for ICN, which allows legitimate users to access and use the cached content directly, and does not require verification/authentication by an online provider authentication server or the content serving router. This framework would help reduce the impact of system down-time from server outages and reduce delivery latency by leveraging caching while guaranteeing access only to legitimate users. Experimental/simulation results demonstrate the suitability of this scheme for all users, but particularly for mobile users, especially in terms of the security and latency overheads.



rate research

Read More

Information-Centric Networking (ICN) is a new networking paradigm, which replaces the widely used host-centric networking paradigm in communication networks (e.g., Internet, mobile ad hoc networks) with an information-centric paradigm, which prioritizes the delivery of named content, oblivious of the contents origin. Content and client security are more intrinsic in the ICN paradigm versus the current host centric paradigm where they have been instrumented as an after thought. By design, the ICN paradigm inherently supports several security and privacy features, such as provenance and identity privacy, which are still not effectively available in the host-centric paradigm. However, given its nascency, the ICN paradigm has several open security and privacy concerns, some that existed in the old paradigm, and some new and unique. In this article, we survey the existing literature in security and privacy research sub-space in ICN. More specifically, we explore three broad areas: security threats, privacy risks, and access control enforcement mechanisms. We present the underlying principle of the existing works, discuss the drawbacks of the proposed approaches, and explore potential future research directions. In the broad area of security, we review attack scenarios, such as denial of service, cache pollution, and content poisoning. In the broad area of privacy, we discuss user privacy and anonymity, name and signature privacy, and content privacy. ICNs feature of ubiquitous caching introduces a major challenge for access control enforcement that requires special attention. In this broad area, we review existing access control mechanisms including encryption-based, attribute-based, session-based, and proxy re-encryption-based access control schemes. We conclude the survey with lessons learned and scope for future work.
The concept of multi-access edge computing (MEC) has been recently introduced to supplement cloud computing by deploying MEC servers to the network edge so as to reduce the network delay and alleviate the load on cloud data centers. However, compared to a resourceful cloud, an MEC server has limited resources. When each MEC server operates independently, it cannot handle all of the computational and big data demands stemming from the users devices. Consequently, the MEC server cannot provide significant gains in overhead reduction due to data exchange between users devices and remote cloud. Therefore, joint computing, caching, communication, and control (4C) at the edge with MEC server collaboration is strongly needed for big data applications. In order to address these challenges, in this paper, the problem of joint 4C in big data MEC is formulated as an optimization problem whose goal is to maximize the bandwidth saving while minimizing delay, subject to the local computation capability of user devices, computation deadline, and MEC resource constraints. However, the formulated problem is shown to be non-convex. To make this problem convex, a proximal upper bound problem of the original formulated problem that guarantees descent to the original problem is proposed. To solve the proximal upper bound problem, a block successive upper bound minimization (BSUM) method is applied. Simulation results show that the proposed approach increases bandwidth-saving and minimizes delay while satisfying the computation deadlines.
As tremendous amount of data being generated everyday from human activity and from devices equipped with sensing capabilities, cloud computing emerges as a scalable and cost-effective platform to store and manage the data. While benefits of cloud computing are numerous, security concerns arising when data and computation are outsourced to a third party still hinder the complete movement to the cloud. In this paper, we focus on the problem of data privacy on the cloud, particularly on access controls over stream data. The nature of stream data and the complexity of sharing data make access control a more challenging issue than in traditional archival databases. We present Streamforce - a system allowing data owners to securely outsource their data to the cloud. The owner specifies fine-grained policies which are enforced by the cloud. The latter performs most of the heavy computations, while learning nothing about the data. To this end, we employ a number of encryption schemes, including deterministic encryption, proxy-based attribute based encryption and sliding-window encryption. In Streamforce, access control policies are modeled as secure continuous queries, which entails minimal changes to existing stream processing engines, and allows for easy expression of a wide-range of policies. In particular, Streamforce comes with a number of secure query operators including Map, Filter, Join and Aggregate. Finally, we implement Streamforce over an open source stream processing engine (Esper) and evaluate its performance on a cloud platform. The results demonstrate practical performance for many real-world applications, and although the security overhead is visible, Streamforce is highly scalable.
Internet of Things (IoT) aims at providing connectivity between every computing entity. However, this facilitation is also leading to more cyber threats which may exploit the presence of a vulnerability of a period of time. One such vulnerability is the zero-day threat that may lead to zero-day attacks which are detrimental to an enterprise as well as the network security. In this article, a study is presented on the zero-day threats for IoT networks and a context graph-based framework is presented to provide a strategy for mitigating these attacks. The proposed approach uses a distributed diagnosis system for classifying the context at the central service provider as well as at the local user site. Once a potential zero-day attack is identified, a critical data sharing protocol is used to transmit alert messages and reestablish the trust between the network entities and the IoT devices. The results show that the distributed approach is capable of mitigating the zero-day threats efficiently with 33% and 21% improvements in terms of cost of operation and communication overheads, respectively, in comparison with the centralized diagnosis system.
A growing issue in the modern cyberspace world is the direct identification of malicious activity over network connections. The boom of the machine learning industry in the past few years has led to the increasing usage of machine learning technologies, which are especially prevalent in the network intrusion detection research community. When utilizing these fairly contemporary techniques, the community has realized that datasets are pivotal for identifying malicious packets and connections, particularly ones associated with information concerning labeling in order to construct learning models. However, there exists a shortage of publicly available, relevant datasets to researchers in the network intrusion detection community. Thus, in this paper, we introduce a method to construct labeled flow data by combining the packet meta-information with IDS logs to infer labels for intrusion detection research. Specifically, we designed a NetFlow-compatible format due to the capability of a a large body of network devices, such as routers and switches, to export NetFlow records from raw traffic. In doing so, the introduced method at hand would aid researchers to access relevant network flow datasets along with label information.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا