Do you want to publish a course? Click here

Resolving the extended atmosphere and the inner wind of Mira ($o$ Ceti) with long ALMA baselines

120   0   0.0 ( 0 )
 Added by Ka Tat Wong
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The prototypical Mira variable, $o$ Cet (Mira), has been observed as a Science Verification target in the 2014 ALMA Long Baseline Campaign with a longest baseline of 15 km. ALMA clearly resolves the images of the continuum and molecular line emission/absorption at an angular resolution of ~30 mas at 220 GHz. We image the data of the $^{28}$SiO v=0, 2 $J$=5-4 and H$_2$O $ u_2$=1 $J(K_a,K_c)$=5(5,0)-6(4,3) transitions and extract spectra from various lines-of-sight towards Miras extended atmosphere. In the course of imaging, we encountered ambiguities in the resulting images and spectra that appear to be related to the performance of the CLEAN algorithm. We resolve Miras millimetre continuum emission and our data are consistent with a radio photosphere with a brightness temperature of 2611$pm$51 K, in agreement with recent results obtained with the VLA. We do not confirm the existence of a compact region (<5 mas) of enhanced brightness. We derive the gas density, kinetic temperature, molecular abundance and outflow/infall velocities in Miras extended atmosphere by modelling the SiO and H$_2$O lines. We find that SiO-bearing gas starts to deplete beyond 4$R_star$ and at a kinetic temperature of $lesssim$600 K. The inner dust shells are probably composed of grain types other than pure silicates. During this observation, Miras atmosphere generally exhibited infall motion, with a shock front of velocity $lesssim$12 km/s outside the radio photosphere. The structures predicted by the hydrodynamical model CODEX can reproduce the observed spectra in astonishing detail; while some other models fail when confronted with the new data. Combined with radiative transfer modelling, ALMA successfully demonstrates the ability to reveal the physical conditions of the extended atmospheres and inner winds of AGB stars in unprecedented detail. (Abbreviated abstract)



rate research

Read More

We present the size, shape and flux densities at millimeter continuum wavelengths, based on ALMA science verification observations in Band 3 (~94.6 GHz) and Band 6 (~228.7 GHz), from the binary Mira A (o Ceti) and Mira B. The Mira AB system has been observed with ALMA at a spatial resolution of down to ~25 mas. The extended atmosphere of Mira A and the wind around Mira B sources are resolved and we derive the size of Mira A and of the ionized region around Mira B. The spectral indices within Band 3 (between 89-100 GHz) and between Band 3 and Band 6 are also derived. The spectral index of Mira A is found to change from 1.71+-0.05 within Band 3 to 1.54+-0.04 between Band 3 and 6. The spectral index of Mira B is 1.3+-0.2 in Band 3, in good agreement with measurements at longer wavelengths. However it rises to 1.72+-0.11 between the bands. For the first time the extended atmosphere of a star is resolved at these frequencies and for Mira A the diameter is ~3.8x3.2 AU in Band 3 (with brightness temperature Tb~5300 K) and ~4.0x3.6 AU in Band 6 (Tb~2500 K). Additionally, a bright hotspot of ~0.4 AU and with Tb~10000 K is found on the stellar disc of Mira A. The size of the ionized region around the accretion disk of Mira B is found to be ~2.4 AU. The emission around Mira B is consistent with that from a partially ionized wind of gravitationally bound material from Mira A close to the accretion disk of Mira B. The Mira A atmosphere does not fully match predictions, with brightness temperatures in Band 3 significantly higher than expected, potentially due to shock heating. The hotspot is likely due to magnetic activity and could be related to the previously observed X-ray flare of Mira A.
This paper presents the first detailed investigation of the characteristics of mm/submm phase fluctuation and phase correction methods obtained using ALMA with baseline lengths up to ~15 km. Most of the spatial structure functions (SSFs) show that the phase fluctuation increases as a function of baseline length, with a power-law slope of ~0.6. In many cases, we find that the slope becomes shallower (average of ~0.2-0.3) at baseline lengths longer than ~1 km, namely showing a turn-over in SSF. The phase correction method using water vapor radiometers (WVRs) works well, especially for the cases where PWV >1 mm, which reduces the degree of phase fluctuations by a factor of two in many cases. However, phase fluctuations still remain after the WVR phase correction, suggesting the existence of other turbulent constituent that cause the phase fluctuation. This is supported by occasional SSFs that do not exhibit any turn-over; these are only seen when the PWV is low or after WVR phase correction. This means that the phase fluctuation caused by this turbulent constituent is inherently smaller than that caused by water vapor. Since there is no turn-over in the SSF up to the maximum baseline length of ~15 km, this turbulent constituent must have scale height of 10 km or more, and thus cannot be water vapor, whose scale height is around 1 km. This large scale height turbulent constituent is likely to be water ice or a dry component. Excess path length fluctuation after the WVR phase correction at a baseline length of 10 km is large (>200 micron), which is significant for high frequency (>450 GHz or <700 micron) observations. These results suggest the need for an additional phase correction method, such as fast switching, in addition to the WVR phase correction. We simulated the fast switching, and the result suggests that it works well, with shorter cycle times linearly improving the coherence.
Observations of 12CO(3-2) emission of the circumbinary envelope of Mira Ceti, made by ALMA are analysed. The observed Doppler velocity distribution is made of three components: a blue-shifted south-eastern arc, which can be described as a ring in slow radial expansion, ~1.7 km/s, making an angle of ~50 deg with the plane of the sky and born some 2000 years ago; a few arcs, probably born at the same epoch as the blue-shifted arc, all sharing Doppler velocities red-shifted by approximately 3 +/- 2 km/s with respect to the main star; the third, central region dominated by the circumbinary envelope, displaying two outflows in the south-western and north-eastern hemispheres. At short distances from the star, up to ~1.5, these hemispheres display very different morphologies: the south-western outflow covers a broad solid angle, expands radially at a rate between 5 and 10 km/s and is slightly red shifted; the north-eastern outflow consists of two arms, both blue-shifted, bracketing a broad dark region where emission is suppressed. At distances between ~1.5 and ~2.5 the asymmetry between the two hemispheres is significantly smaller and detached arcs, particularly spectacular in the north-eastern hemisphere are present. Close to the stars, we observe a mass of gas surrounding Mira B, with a size of a few tens of AU, and having Doppler velocities with respect to Mira B reaching +/-1.5 km/s, which we interpret as gas flowing from Mira A toward Mira B.
94 - K. Ohnaka , M. Hadjara , 2018
We present a near-infrared spectro-interferometric observation of the non-Mira-type, semiregular asymptotic giant branch star SW Vir. Our aim is to probe the physical properties of the outer atmosphere with spatially resolved data in individual molecular and atomic lines. We observed SW Vir in the spectral window between 2.28 and 2.31 micron with the near-infrared interferometric instrument AMBER at ESOs Very Large Telescope Interferometer (VLTI). Thanks to AMBERs high spatial resolution and high spectral resolution of 12000, the atmosphere of SW Vir has been spatially resolved not only in strong CO first overtone lines but also in weak molecular and atomic lines of H2O, CN, HF, Ti, Fe, Mg, and Ca. Comparison with the MARCS photospheric models reveals that the star appears larger than predicted by the hydrostatic models not only in the CO lines but also even in the weak molecular and atomic lines. We found that this is primarily due to the H2O lines (but also possibly due to the HF and Ti lines) originating in the extended outer atmosphere. Although the H2O lines manifest themselves very little in the spatially unresolved spectrum, the individual rovibrational H2O lines from the outer atmosphere can be identified in the spectro-interferometric data. Our modeling suggests an H2O column density of 10^{19}--10^{20} cm^{-2} in the outer atmosphere extending out to ~2 Rstar. Our study has revealed that the effects of the nonphotospheric outer atmosphere are present in the spectro-interferometric data not only in the strong CO first overtone lines but also in the weak molecular and atomic lines. Therefore, analyses of spatially unresolved spectra, such as for example analyses of the chemical composition, should be carried out with care even if the lines appear to be weak.
We study the morpho-kinematics of the circumbinary envelope of Mira Ceti between $sim$100 and $sim$350 au from the stars using ALMA observations of the SiO ($ u$=0, $J$=5-4) and CO ($ u$=0, $J$=3-2) emissions with the aim of presenting an accurate and reliable picture of what cannot be ignored when modelling the dynamics at stake. A critical study of the uncertainties attached to imaging is presented. The line emissions are shown to be composed of a few separated fragments. They are described in detail and plausible interpretations of their genesis are discussed. Evidence for a focusing effect of the Mira A wind by Mira B over the past century is presented; it accounts for only a small fraction of the overall observed emission but its accumulation over several orbital periods may have produced an enhancement of CO emission in the orbital plane of Mira B. We identify a South-western outflow and give arguments for the anti-correlation observed between CO and SiO emissions being the result of a recent mass ejection accompanied by a shock wave. We discuss the failure of simple scenarios that have been proposed earlier to explain some of the observed features and comment on the apparent lack of continuity between the present observations and those obtained in the close environment of the stars. Evidence is obtained for the presence of large Doppler velocity components near the line of sight aiming to the star, possibly revealing the presence of important turbulence at $sim$5 to 10 au away from Mira A.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا