No Arabic abstract
In quantum field theory, we learn that fermions come in three varieties: Majorana, Weyl, and Dirac. Here we show that in solid state systems this classification is incomplete and find several additional types of crystal symmetry-protected free fermionic excitations . We exhaustively classify linear and quadratic 3-, 6- and 8- band crossings stabilized by space group symmetries in solid state systems with spin-orbit coupling and time-reversal symmetry. Several distinct types of fermions arise, differentiated by their degeneracies at and along high symmetry points, lines, and surfaces. Some notable consequences of these fermions are the presence of Fermi arcs in non-Weyl systems and the existence of Dirac lines. Ab-initio calculations identify a number of materials that realize these exotic fermions close to the Fermi level.
We report intertwined Weyl phases, which come from superposing topological phases by crystalline symmetry. In the intertwined Weyl phases, an unconventional Weyl phase where Weyl points possess a higher charge (monopole charge>1) due to rotation symmetry, and a higher-order topological phase enforced by rotation symmetry, are superposed. The two phases are no longer separable, but intertwine with each other, resulting in the novel phase. Remarkably, the intertwining leads to a prominent characteristic feature of the intertwined Weyl phases: $textit{the change of Fermi-arc topology}$ in a periodic pattern, i.e., the way how Fermi arcs connect to Weyl points changes drastically with respect to surface orientation, which exhibits a periodic pattern. Such a phenomenon is absent in any individual phase alone. Moreover, we elaborate on how to emulate the intertwined double-Weyl phase in cold atoms. Our theory is quite promising for generating new topological phases based on existing ones.
Within a Kubo formalism, we study dc transport and ac optical properties of 3D Dirac and Weyl semimetals. Emphasis is placed on the approach to charge neutrality and on the differences between Dirac and Weyl materials. At charge neutrality, the zero-temperature limit of the dc conductivity is not universal and also depends on the residual scattering model employed. However, the Lorenz number L retains its usual value L_0. With increasing temperature, the Wiedemann-Franz law is violated. At high temperatures, L exhibits a new plateau at a value dependent on the details of the scattering rate. Such details can also appear in the optical conductivity, both in the Drude response and interband background. In the clean limit, the interband background is linear in photon energy and always extrapolates to the origin. This background can be shifted to the right through the introduction of a massless gap. In this case, the extrapolation can cut the axis at a finite photon energy as is observed in some experiments. It is also of interest to differentiate between the two types of Weyl semimetals: those with broken time-reversal symmetry and those with broken spatial-inversion symmetry. We show that, while the former will follow the same behaviour as the 3D Dirac semimetals, for the zero magnetic field properties discussed here, the latter type will show a double step in the optical conductivity at finite doping and a single absorption edge at charge neutrality. The Drude conductivity is always finite in this case, even at charge neutrality.
Bilayer graphene is a highly promising material for electronic and optoelectronic applications since it is supporting massive Dirac fermions with a tuneable band gap. However, no consistent picture of the gaps effect on the optical and transport behavior has emerged so far, and it has been proposed that the insulating nature of the gap could be compromised by unavoidable structural defects, by topological in-gap states, or that the electronic structure could be altogether changed by many-body effects. Here we directly follow the excited carriers in bilayer graphene on a femtosecond time scale, using ultrafast time- and angle-resolved photoemission. We find a behavior consistent with a single-particle band gap. Compared to monolayer graphene, the existence of this band gap leads to an increased carrier lifetime in the minimum of the lowest conduction band. This is in sharp contrast to the second sub-state of the conduction band, in which the excited electrons decay through fast, phonon-assisted inter-band transitions.
Recently Weyl fermions have attracted increasing interest in condensed matter physics due to their rich phenomenology originated from their nontrivial monopole charges. Here we present a theory of real Dirac points that can be understood as real monopoles in momentum space, serving as a real generalization of Weyl fermions with the reality being endowed by the $PT$ symmetry. The real counterparts of topological features of Weyl semimetals, such as Nielsen-Ninomiya no-go theorem, $2$D sub topological insulators and Fermi arcs, are studied in the $PT$ symmetric Dirac semimetals, and the underlying reality-dependent topological structures are discussed. In particular, we construct a minimal model of the real Dirac semimetals based on recently proposed cold atom experiments and quantum materials about $PT$ symmetric Dirac nodal line semimetals.
We show that a class of compounds with $I$4/$mcm$ crystalline symmetry hosts three-dimensional semi-Dirac fermions. Unlike the known two-dimensional semi-Dirac points, the degeneracy of these three-dimensional semi-Dirac points is not lifted by spin-orbit coupling due to the protection by a nonsymmorphic symmetry -- screw rotation in the $a-b$ plane and a translation along the $c$ axis. This crystalline symmetry is found in tetragonal perovskite oxides, realizable in thin films by epitaxial strain that results in a$^0$a$^0$c$^-$-type octahedral rotation. Interestingly, with broken time-reversal symmetry, two pairs of Weyl points emerge from the semi-Dirac points within the Brillouin zone, and an additional lattice distortion leads to enhanced intrinsic anomalous Hall effect. We discuss possible fingerprints of this symmetry-protected band topology in electronic transport experiments.