No Arabic abstract
Using first-principles method and Boltzmann theory, we provide an accurate prediction of the electronic band structure and thermoelectric transport properties of alpha-MgAgSb. Our calculations demonstrate that only when an appropriate exchange-correlation functional is chosen can we correctly reproduce the semiconducting nature of this compound. By fine tuning the carrier concentration, the thermoelectric performance of alpha-MgAgSb can be significantly optimized, which exhibits a strong temperature dependence and gives a maximum ZT value of 1.7 at 550 K.
Whether porosity can effectively improve thermoelectric performance is still an open question. Herein we report that thermoelectric performance can be significantly enhanced by creating porosity in n-type Mg3.225Mn0.025Sb1.5Bi0.49Te0.01, with a ZT of ~0.9 at 323 K and ~1.6 at 723 K, making the average ZT much higher for better performance. The large improvement at room temperature is significant considering that such a ZT value is comparable to the best ZT at this temperature in n-type Bi2Te3. The enhancement was mainly from the improved electrical mobility and multi-scale phonon scattering, particularly from the well-dispersed bismuth nano-precipitates in the porous structure. We further extend this approach to other thermoelectric materials such as half-Heuslers Nb0.56V0.24Ti0.2FeSb and Hf0.25Zr0.75NiSn0.99Sb0.01 and Bi0.5Sb1.5Te3 showing similar improvements, further advancing thermoelectric materials for applications.
We phenomenologically calculate the performance of the recently-observed Seebeck-driven transverse thermoelectric generation (STTG) for various systems in terms of the thermopower, power factor, and figure of merit to demonstrate the usefulness of STTG. The STTG system consists of a closed circuit comprising thermoelectric and magnetic materials which exhibit the Seebeck and anomalous Hall effects, respectively. When a temperature gradient is applied to the hybrid system, the Seebeck effect in the thermoelectric material layer generates a longitudinal charge current in the closed circuit and the charge current subsequently drives the anomalous Hall effect in the magnetic material layer. The anomalous Hall voltage driven by the Seebeck effect has a similar symmetry to the transverse thermoelectric conversion based on the anomalous Nernst effect. We find that the thermoelectric properties of STTG can be much better than those of the anomalous Nernst effect by increasing the Seebeck coefficient and anomalous Hall angle of the thermoelectric and magnetic materials, respectively, as well as by optimizing their dimensions. We also formulate the electronic cooling performance in the STTG system, confirming the reciprocal relation for the hybrid transverse thermoelectric conversion.
Excellent thermoelectric performance in the out-of-layer n-doped SnSe has been observed experimentally (Chang et al., Science 360, 778-783 (2018)). However, a first-principles investigation of the dominant scattering mechanisms governing all thermoelectric transport properties is lacking. In the present work, by applying extensive first-principles calculations of electron-phonon coupling associated with the calculation of the scattering by ionized impurities, we investigate the reasons behind the superior figure of merit as well as the enhancement of zT above 600 K in n-doped out-of-layer SnSe, as compared to p-doped SnSe with similar carrier densities. For the n-doped case, the relaxation time is dominated by ionized impurity scattering and increases with temperature, a feature that maintains the power factor at high values at higher temperatures and simultaneously causes the carrier thermal conductivity at zero electric current (k_el) to decrease faster for higher temperatures, leading to an ultrahigh-zT = 3.1 at 807 K. We rationalize the roles played by k_el and k^0 (the thermal conductivity due to carrier transport under isoelectrochemical conditions) in the determination of zT. Our results show the ratio between k^0 and the lattice thermal conductivity indeed corresponds to the upper limit for zT, whereas the difference between calculated zT and the upper limit is proportional to k_el.
Tin chalcogenides (SnS, SnSe, and SnTe) are found to have improved thermoelectric properties upon the reduction of their dimensionality. Here we found the tilted AA + s stacked two-dimensional (2D) SnTe bilayer as the most stable phase among several stackings as predicted by the structural optimization and phonon transport properties. The carrier mobility and relaxation time are evaluated using the deformation potential theory, which is found to be relatively high due to the high 2D elastic modulus, low deformation potential constant, and moderate effective masses. The SnTe bilayer shows a high Seebeck coefficient, high electrical conductivity, and ultralow lattice thermal conductivity. High TE figure of merit (ZT) values, as high as 4.61 along the zigzag direction, are predicted for the SnTe bilayer. These ZT values are much enhanced as compared to the bulk as well as monolayer SnTe and other 2D compounds.
Thermoelectric figures of merit, ZT > 0.5, have been obtained in arc-melted TiNiSn-based ingots. This promising conversion efficiency is due to a low lattice thermal conductivity, which is attributed to excess nickel in the half-Heusler structure.