No Arabic abstract
We show that the required high quality of the Peccei-Quinn symmetry can be naturally explained in the aligned QCD axion models where the QCD axion arises from multiple axions with decay constants much smaller than the axion window, e.g., around the weak scale. Even in the presence of general Planck-suppressed Peccei-Quinn symmetry breaking operators, the effective strong CP phase remains sufficiently small in contrast to the standard axion models without the alignment. The QCD axion potential has small or large modulations due to the symmetry breaking operators, which can significantly affect the axion cosmology. When the axions are trapped in different minima, domain walls appear and their scaling behavior suppresses the axion isocurvature perturbations at super-horizon scales. Our scenario predicts many axions and saxions coupled to gluons, and they may be searched for at collider experiments. In particular, the recently found diphoton excess at 750 GeV could be due to one of such (s)axions.
We consider extensions of the Standard Model in which a spontaneously broken global chiral Peccei-Quinn (PQ) symmetry arises as an accidental symmetry of an exact $Z_N$ symmetry. For $N = 9$ or $10$, this symmetry can protect the accion - the Nambu-Goldstone boson arising from the spontaneous breaking of the accidental PQ symmetry - against semi-classical gravity effects, thus suppressing gravitational corrections to the effective potential, while it can at the same time provide for the small explicit symmetry breaking term needed to make models with domain wall number $N_{rm DW}>1$, such as the popular Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) model ($N_{rm DW}=6$), cosmologically viable even in the case where spontaneous PQ symmetry breaking occurred after inflation. We find that $N=10$ DFSZ accions with mass $m_A approx 3.5$-$4.2,mathrm{meV}$ can account for cold dark matter and simultaneously explain the hints for anomalous cooling of white dwarfs. The proposed helioscope International Axion Observatory - being sensitive to solar DFSZ accions with mass above a few meV - will decisively test this scenario.
We present a 5D axion-neutrino model that explains the Standard Model fermion mass hierarchy and flavor structure, while simultaneously generating a high-quality axion. The axion and right-handed neutrinos transform under a 5D Peccei-Quinn gauge symmetry, and have highly suppressed profiles on the UV brane where the symmetry is explicitly broken. This setup allows neutrinos to be either Dirac, or Majorana with hierarchically small sterile neutrino masses. The axion decay constant originates from the IR scale, which in the holographically dual 4D description corresponds to the confinement scale of some new strong dynamics with a high-quality global Peccei-Quinn symmetry that produces a composite axion and light, composite sterile neutrinos. The sterile neutrinos could be observed in astrophysical or laboratory experiments, and the model predicts specific axion--neutrino couplings.
We propose a model where Dirac neutrino mass is obtained from small vacuum expectation value (VEV) of neutrino-specific Higgs doublet without fine-tuning problem. The small VEV results from a seesaw-like formula with the high energy scale identified as the Peccei-Quinn (PQ) symmetry breaking scale. Axion can be introduced {it `a la} KSVZ or DFSZ. The model suggests neutrino mass, solution to the strong CP problem, and dark matter may be mutually interconnected.
We propose a model of Dirac neutrino masses generated at one-loop level. The origin of this mass is induced from Peccei-Quinn symmetry breaking which was proposed to solve the so-called strong CP problem in QCD, therefore, the neutrino mass is connected with the QCD scale, $Lambda_{rm QCD}$. We also study the parameter space of this model confronting with neutrino oscillation data and leptonic rare decays. The phenomenological implications to leptonic flavor physics such as the electromagnetic moment of charged leptons and neutrinos are studied. Axion as the dark matter candidate is one of the byproduct in our scenario. Di-photon and Z-photon decay channels in the LHC Higgs search are investigated, we show that the effects of singly charged singlet scalar can be distinguished from the general two Higgs doublet model.
We show that, for values of the axion decay constant parametrically close to the GUT scale, the Peccei-Quinn phase transition may naturally occur during warm inflation. This results from interactions between the Peccei-Quinn scalar field and the ambient thermal bath, which is sustained by the inflaton field through dissipative effects. It is therefore possible for the axion field to appear as a dynamical degree of freedom only after observable CMB scales have become super-horizon, thus avoiding the large-scale axion isocurvature perturbations that typically plague such models. This nevertheless yields a nearly scale-invariant spectrum of axion isocurvature perturbations on small scales, with a density contrast of up to a few percent, which may have a significant impact on the formation of gravitationally-bound axion structures such as mini-clusters.