No Arabic abstract
We propose a model of Dirac neutrino masses generated at one-loop level. The origin of this mass is induced from Peccei-Quinn symmetry breaking which was proposed to solve the so-called strong CP problem in QCD, therefore, the neutrino mass is connected with the QCD scale, $Lambda_{rm QCD}$. We also study the parameter space of this model confronting with neutrino oscillation data and leptonic rare decays. The phenomenological implications to leptonic flavor physics such as the electromagnetic moment of charged leptons and neutrinos are studied. Axion as the dark matter candidate is one of the byproduct in our scenario. Di-photon and Z-photon decay channels in the LHC Higgs search are investigated, we show that the effects of singly charged singlet scalar can be distinguished from the general two Higgs doublet model.
We propose a model where Dirac neutrino mass is obtained from small vacuum expectation value (VEV) of neutrino-specific Higgs doublet without fine-tuning problem. The small VEV results from a seesaw-like formula with the high energy scale identified as the Peccei-Quinn (PQ) symmetry breaking scale. Axion can be introduced {it `a la} KSVZ or DFSZ. The model suggests neutrino mass, solution to the strong CP problem, and dark matter may be mutually interconnected.
We aim to explain the nature of neutrinos using Peccei-Quinn symmetry. We discuss two simple scenarios, one based on a type-II Dirac seesaw and the other in a one-loop neutrino mass generation, which solve the strong CP problem and naturally lead to Dirac neutrinos. In the first setup latest neutrino mass limit gives rise to axion which is in the reach of conventional searches. Moreover, we have both axion as well as WIMP dark mater for our second set up.
The relaxation mechanism, which solves the electroweak hierarchy problem without relying on TeV scale new physics, crucially depends on how a Higgs-dependent back-reaction potential is generated. In this paper, we suggest a new scenario in which the scalar potential induced by the QCD anomaly is responsible both for the relaxation mechanism and the Peccei-Quinn mechanism to solve the strong CP problem. The key idea is to introduce the relaxion and the QCD axion whose cosmic evolutions become quite different depending on an inflaton-dependent scalar potential. Our scheme raises the cutoff scale of the Higgs mass up to 10^7 GeV, and allows reheating temperature higher than the electroweak scale as would be required for viable cosmology. In addition, the QCD axion can account for the observed dark matter of the universe as produced by the conventional misalignment mechanism. We also consider the possibility that the couplings of the Standard Model depend on the inflaton and become stronger during inflation. In this case, the relaxation can be implemented with a sub-Planckian field excursion of the relaxion for a cutoff scale below 10 TeV.
We show that, for values of the axion decay constant parametrically close to the GUT scale, the Peccei-Quinn phase transition may naturally occur during warm inflation. This results from interactions between the Peccei-Quinn scalar field and the ambient thermal bath, which is sustained by the inflaton field through dissipative effects. It is therefore possible for the axion field to appear as a dynamical degree of freedom only after observable CMB scales have become super-horizon, thus avoiding the large-scale axion isocurvature perturbations that typically plague such models. This nevertheless yields a nearly scale-invariant spectrum of axion isocurvature perturbations on small scales, with a density contrast of up to a few percent, which may have a significant impact on the formation of gravitationally-bound axion structures such as mini-clusters.
Baryon number is an accidental symmetry in the standard model, while Peccei-Quinn symmetry is hypothetical symmetry which is introduced to solve the strong CP problem. We study the possible connections between Peccei-Quinn symmetry and baryon number symmetry. In this framework, an axion is identified as the Nambu-Goldstone boson of baryon number violation. As a result, characteristic baryon number violating processes are predicted. We developed the general method to determine the baryon number and lepton number of new scalar in the axion model.