Do you want to publish a course? Click here

Hoaxy: A Platform for Tracking Online Misinformation

94   0   0.0 ( 0 )
 Added by Chengcheng Shao
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Massive amounts of misinformation have been observed to spread in uncontrolled fashion across social media. Examples include rumors, hoaxes, fake news, and conspiracy theories. At the same time, several journalistic organizations devote significant efforts to high-quality fact checking of online claims. The resulting information cascades contain instances of both accurate and inaccurate information, unfold over multiple time scales, and often reach audiences of considerable size. All these factors pose challenges for the study of the social dynamics of online news sharing. Here we introduce Hoaxy, a platform for the collection, detection, and analysis of online misinformation and its related fact-checking efforts. We discuss the design of the platform and present a preliminary analysis of a sample of public tweets containing both fake news and fact checking. We find that, in the aggregate, the sharing of fact-checking content typically lags that of misinformation by 10--20 hours. Moreover, fake news are dominated by very active users, while fact checking is a more grass-roots activity. With the increasing risks connected to massive online misinformation, social news observatories have the potential to help researchers, journalists, and the general public understand the dynamics of real and fake news sharing.



rate research

Read More

Massive amounts of fake news and conspiratorial content have spread over social media before and after the 2016 US Presidential Elections despite intense fact-checking efforts. How do the spread of misinformation and fact-checking compete? What are the structural and dynamic characteristics of the core of the misinformation diffusion network, and who are its main purveyors? How to reduce the overall amount of misinformation? To explore these questions we built Hoaxy, an open platform that enables large-scale, systematic studies of how misinformation and fact-checking spread and compete on Twitter. Hoaxy filters public tweets that include links to unverified claims or fact-checking articles. We perform k-core decomposition on a diffusion network obtained from two million retweets produced by several hundred thousand accounts over the six months before the election. As we move from the periphery to the core of the network, fact-checking nearly disappears, while social bots proliferate. The number of users in the main core reaches equilibrium around the time of the election, with limited churn and increasingly dense connections. We conclude by quantifying how effectively the network can be disrupted by penalizing the most central nodes. These findings provide a first look at the anatomy of a massive online misinformation diffusion network.
The global COVID-19 pandemic has led to the online proliferation of health-, political-, and conspiratorial-based misinformation. Understanding the reach and belief in this misinformation is vital to managing this crisis, as well as future crises. The results from our global survey finds a troubling reach of and belief in COVID-related misinformation, as well as a correlation with those that primarily consume news from social media, and, in the United States, a strong correlation with political leaning.
Online debates are often characterised by extreme polarisation and heated discussions among users. The presence of hate speech online is becoming increasingly problematic, making necessary the development of appropriate countermeasures. In this work, we perform hate speech detection on a corpus of more than one million comments on YouTube videos through a machine learning model fine-tuned on a large set of hand-annotated data. Our analysis shows that there is no evidence of the presence of serial haters, intended as active users posting exclusively hateful comments. Moreover, coherently with the echo chamber hypothesis, we find that users skewed towards one of the two categories of video channels (questionable, reliable) are more prone to use inappropriate, violent, or hateful language within their opponents community. Interestingly, users loyal to reliable sources use on average a more toxic language than their counterpart. Finally, we find that the overall toxicity of the discussion increases with its length, measured both in terms of number of comments and time. Our results show that, coherently with Godwins law, online debates tend to degenerate towards increasingly toxic exchanges of views.
We study collective attention paid towards hurricanes through the lens of $n$-grams on Twitter, a social media platform with global reach. Using hurricane name mentions as a proxy for awareness, we find that the exogenous temporal dynamics are remarkably similar across storms, but that overall collective attention varies widely even among storms causing comparable deaths and damage. We construct `hurricane attention maps and observe that hurricanes causing deaths on (or economic damage to) the continental United States generate substantially more attention in English language tweets than those that do not. We find that a hurricanes Saffir-Simpson wind scale category assignment is strongly associated with the amount of attention it receives. Higher category storms receive higher proportional increases of attention per proportional increases in number of deaths or dollars of damage, than lower category storms. The most damaging and deadly storms of the 2010s, Hurricanes Harvey and Maria, generated the most attention and were remembered the longest, respectively. On average, a category 5 storm receives 4.6 times more attention than a category 1 storm causing the same number of deaths and economic damage.
Previous research has demonstrated that various properties of infectious diseases can be inferred from online search behaviour. In this work we use time series of online search query frequencies to gain insights about the prevalence of COVID-19 in multiple countries. We first develop unsupervised modelling techniques based on associated symptom categories identified by the United Kingdoms National Health Service and Public Health England. We then attempt to minimise an expected bias in these signals caused by public interest -- as opposed to infections -- using the proportion of news media coverage devoted to COVID-19 as a proxy indicator. Our analysis indicates that models based on online searches precede the reported confirmed cases and deaths by 16.7 (10.2 - 23.2) and 22.1 (17.4 - 26.9) days, respectively. We also investigate transfer learning techniques for mapping supervised models from countries where the spread of disease has progressed extensively to countries that are in earlier phases of their respective epidemic curves. Furthermore, we compare time series of online search activity against confirmed COVID-19 cases or deaths jointly across multiple countries, uncovering interesting querying patterns, including the finding that rarer symptoms are better predictors than common ones. Finally, we show that web searches improve the short-term forecasting accuracy of autoregressive models for COVID-19 deaths. Our work provides evidence that online search data can be used to develop complementary public health surveillance methods to help inform the COVID-19 response in conjunction with more established approaches.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا