No Arabic abstract
Online debates are often characterised by extreme polarisation and heated discussions among users. The presence of hate speech online is becoming increasingly problematic, making necessary the development of appropriate countermeasures. In this work, we perform hate speech detection on a corpus of more than one million comments on YouTube videos through a machine learning model fine-tuned on a large set of hand-annotated data. Our analysis shows that there is no evidence of the presence of serial haters, intended as active users posting exclusively hateful comments. Moreover, coherently with the echo chamber hypothesis, we find that users skewed towards one of the two categories of video channels (questionable, reliable) are more prone to use inappropriate, violent, or hateful language within their opponents community. Interestingly, users loyal to reliable sources use on average a more toxic language than their counterpart. Finally, we find that the overall toxicity of the discussion increases with its length, measured both in terms of number of comments and time. Our results show that, coherently with Godwins law, online debates tend to degenerate towards increasingly toxic exchanges of views.
Online hate is a growing concern on many social media platforms and other sites. To combat it, technology companies are increasingly identifying and sanctioning `hateful users rather than simply moderating hateful content. Yet, most research in online hate detection to date has focused on hateful content. This paper examines how fairer and more accurate hateful user detection systems can be developed by incorporating social network information through geometric deep learning. Geometric deep learning dynamically learns information-rich network representations and can generalise to unseen nodes. This is essential for moving beyond manually engineered network features, which lack scalability and produce information-sparse network representations. This paper compares the accuracy of geometric deep learning with other techniques which either exclude network information or incorporate it through manual feature engineering (e.g., node2vec). It also evaluates the fairness of these techniques using the `predictive equality criteria, comparing the false positive rates on a subset of 136 African-American users with 4836 other users. Geometric deep learning produces the most accurate and fairest classifier, with an AUC score of 90.8% on the entire dataset and a false positive rate of zero among the African-American subset for the best performing model. This highlights the benefits of more effectively incorporating social network features in automated hateful user detection. Such an approach is also easily operationalized for real-world content moderation as it has an efficient and scalable design.
Citizen-generated counter speech is a promising way to fight hate speech and promote peaceful, non-polarized discourse. However, there is a lack of large-scale longitudinal studies of its effectiveness for reducing hate speech. To this end, we perform an exploratory analysis of the effectiveness of counter speech using several different macro- and micro-level measures to analyze 180,000 political conversations that took place on German Twitter over four years. We report on the dynamic interactions of hate and counter speech over time and provide insights into whether, as in `classic bullying situations, organized efforts are more effective than independent individuals in steering online discourse. Taken together, our results build a multifaceted picture of the dynamics of hate and counter speech online. While we make no causal claims due to the complexity of discourse dynamics, our findings suggest that organized hate speech is associated with changes in public discourse and that counter speech -- especially when organized -- may help curb hateful rhetoric in online discourse.
The ongoing Coronavirus (COVID-19) pandemic highlights the inter-connectedness of our present-day globalized world. With social distancing policies in place, virtual communication has become an important source of (mis)information. As increasing number of people rely on social media platforms for news, identifying misinformation and uncovering the nature of online discourse around COVID-19 has emerged as a critical task. To this end, we collected streaming data related to COVID-19 using the Twitter API, starting March 1, 2020. We identified unreliable and misleading contents based on fact-checking sources, and examined the narratives promoted in misinformation tweets, along with the distribution of engagements with these tweets. In addition, we provide examples of the spreading patterns of prominent misinformation tweets. The analysis is presented and updated on a publically accessible dashboard (https://usc-melady.github.io/COVID-19-Tweet-Analysis) to track the nature of online discourse and misinformation about COVID-19 on Twitter from March 1 - June 5, 2020. The dashboard provides a daily list of identified misinformation tweets, along with topics, sentiments, and emerging trends in the COVID-19 Twitter discourse. The dashboard is provided to improve visibility into the nature and quality of information shared online, and provide real-time access to insights and information extracted from the dataset.
Massive amounts of fake news and conspiratorial content have spread over social media before and after the 2016 US Presidential Elections despite intense fact-checking efforts. How do the spread of misinformation and fact-checking compete? What are the structural and dynamic characteristics of the core of the misinformation diffusion network, and who are its main purveyors? How to reduce the overall amount of misinformation? To explore these questions we built Hoaxy, an open platform that enables large-scale, systematic studies of how misinformation and fact-checking spread and compete on Twitter. Hoaxy filters public tweets that include links to unverified claims or fact-checking articles. We perform k-core decomposition on a diffusion network obtained from two million retweets produced by several hundred thousand accounts over the six months before the election. As we move from the periphery to the core of the network, fact-checking nearly disappears, while social bots proliferate. The number of users in the main core reaches equilibrium around the time of the election, with limited churn and increasingly dense connections. We conclude by quantifying how effectively the network can be disrupted by penalizing the most central nodes. These findings provide a first look at the anatomy of a massive online misinformation diffusion network.
The spreading COVID-19 misinformation over social media already draws the attention of many researchers. According to Google Scholar, about 26000 COVID-19 related misinformation studies have been published to date. Most of these studies focusing on 1) detect and/or 2) analysing the characteristics of COVID-19 related misinformation. However, the study of the social behaviours related to misinformation is often neglected. In this paper, we introduce a fine-grained annotated misinformation tweets dataset including social behaviours annotation (e.g. comment or question to the misinformation). The dataset not only allows social behaviours analysis but also suitable for both evidence-based or non-evidence-based misinformation classification task. In addition, we introduce leave claim out validation in our experiments and demonstrate the misinformation classification performance could be significantly different when applying to real-world unseen misinformation.