Do you want to publish a course? Click here

Inferring causality from noisy time series data

78   0   0.0 ( 0 )
 Added by Dan M{\\o}nster
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Convergent Cross-Mapping (CCM) has shown high potential to perform causal inference in the absence of models. We assess the strengths and weaknesses of the method by varying coupling strength and noise levels in coupled logistic maps. We find that CCM fails to infer accurate coupling strength and even causality direction in synchronized time-series and in the presence of intermediate coupling. We find that the presence of noise deterministically reduces the level of cross-mapping fidelity, while the convergence rate exhibits higher levels of robustness. Finally, we propose that controlled noise injections in intermediate-to-strongly coupled systems could enable more accurate causal inferences. Given the inherent noisy nature of real-world systems, our findings enable a more accurate evaluation of CCM applicability and advance suggestions on how to overcome its weaknesses.



rate research

Read More

Continuous, automated surveillance systems that incorporate machine learning models are becoming increasingly more common in healthcare environments. These models can capture temporally dependent changes across multiple patient variables and can enhance a clinicians situational awareness by providing an early warning alarm of an impending adverse event such as sepsis. However, most commonly used methods, e.g., XGBoost, fail to provide an interpretable mechanism for understanding why a model produced a sepsis alarm at a given time. The black-box nature of many models is a severe limitation as it prevents clinicians from independently corroborating those physiologic features that have contributed to the sepsis alarm. To overcome this limitation, we propose a generalized linear model (GLM) approach to fit a Granger causal graph based on the physiology of several major sepsis-associated derangements (SADs). We adopt a recently developed stochastic monotone variational inequality-based estimator coupled with forwarding feature selection to learn the graph structure from both continuous and discrete-valued as well as regularly and irregularly sampled time series. Most importantly, we develop a non-asymptotic upper bound on the estimation error for any monotone link function in the GLM. We conduct real-data experiments and demonstrate that our proposed method can achieve comparable performance to popular and powerful prediction methods such as XGBoost while simultaneously maintaining a high level of interpretability.
We present an adaptation of the standard Grassberger-Proccacia (GP) algorithm for estimating the Correlation Dimension of a time series in a non subjective manner. The validity and accuracy of this approach is tested using different types of time series, such as, those from standard chaotic systems, pure white and colored noise and chaotic systems added with noise. The effectiveness of the scheme in analysing noisy time series, particularly those involving colored noise, is investigated. An interesting result we have obtained is that, for the same percentage of noise addition, data with colored noise is more distinguishable from the corresponding surrogates, than data with white noise. As examples for real life applications, analysis of data from an astrophysical X-ray object and human brain EEG, are presented.
We use the methodology of singular spectrum analysis (SSA), principal component analysis (PCA), and multi-fractal detrended fluctuation analysis (MFDFA), for investigating characteristics of vibration time series data from a friction brake. SSA and PCA are used to study the long time-scale characteristics of the time series. MFDFA is applied for investigating all time scales up to the smallest recorded one. It turns out that the majority of the long time-scale dynamics, that is presumably dominated by the structural dynamics of the brake system, is dominated by very few active dimensions only and can well be understood in terms of low dimensional chaotic attractors. The multi-fractal analysis shows that the fast dynamical processes originating in the friction interface are in turn truly multi-scale in nature.
Complex systems, such as airplanes, cars, or financial markets, produce multivariate time series data consisting of a large number of system measurements over a period of time. Such data can be interpreted as a sequence of states, where each state represents a prototype of system behavior. An important problem in this domain is to identify repeated sequences of states, known as motifs. Such motifs correspond to complex behaviors that capture common sequences of state transitions. For example, in automotive data, a motif of making a turn might manifest as a sequence of states: slowing down, turning the wheel, and then speeding back up. However, discovering these motifs is challenging, because the individual states and state assignments are unknown, have different durations, and need to be jointly learned from the noisy time series. Here we develop motif-aware state assignment (MASA), a method to discover common motifs in noisy time series data and leverage those motifs to more robustly assign states to measurements. We formulate the problem of motif discovery as a large optimization problem, which we solve using an expectation-maximization type approach. MASA performs well in the presence of noise in the input data and is scalable to very large datasets. Experiments on synthetic data show that MASA outperforms state-of-the-art baselines by up to 38.2%, and two case studies demonstrate how our approach discovers insightful motifs in the presence of noise in real-world time series data.
Inferring nonlinear and asymmetric causal relationships between multivariate longitudinal data is a challenging task with wide-ranging application areas including clinical medicine, mathematical biology, economics and environmental research. A number of methods for inferring causal relationships within complex dynamic and stochastic systems have been proposed but there is not a unified consistent definition of causality in this context. We evaluate the performance of ten prominent bivariate causality indices for time series data, across four simulated model systems that have different coupling schemes and characteristics. In further experiments, we show that these methods may not always be invariant to real-world relevant transformations (data availability, standardisation and scaling, rounding error, missing data and noisy data). We recommend transfer entropy and nonlinear Granger causality as likely to be particularly robust indices for estimating bivariate causal relationships in real-world applications. Finally, we provide flexible open-access Python code for computation of these methods and for the model simulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا