Do you want to publish a course? Click here

$X(5568)$ and and its partner states

105   0   0.0 ( 0 )
 Added by Yanrui Liu
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

Stimulated by the recent observation of the $X(5568)$, we study the $X(5568)$ and its partners under the tetraquark scenario. In the framework of the color-magnetic interaction, we estimate the masses of the partner states of the $X(5568)$ and discuss their decay pattern, which provide valuable information on the future experimental search of these states.



rate research

Read More

107 - R. Albuquerque 2016
We scrutinize recent QCD spectral sum rules (QSSR) results to lowest order (LO) predicting the masses of the BK molecule and (su)bar(bd) four-quark states. We improve these results by adding NLO and N2LO corrections to the PT contributions giving a more precise meaning on the b-quark mass definition used in the analysis. We extract our optimal predictions using Laplace sum rule (LSR) within the standard stability criteria versus the changes of the external free parameters (tau-sum rule variable, t_c continuum threshold and subtraction constant mu). The smallness of the higher order PT corrections justifies (a posteriori) the LO order results + the uses of the ambiguous heavy quark mass to that order. However, our predicted spectra in the range (5173sim 5226) MeV, summarized in Table 7, for exotic hadrons built with four different flavours (buds), do not support some previous interpretations of the D0 candidate[1], X(5568), as a pure molecule or a four-quark state. If experimentally confirmed, it could result from their mixing with an angle: sin 2thetaapprox 0.15. One can also scan the region (2327~ 2444) MeV (where the D*_{s0}(2317) might be a good candidate) and the one (5173~ 5226) MeV for detecting these (cuds) and (buds) unmixed exotic hadrons (if any) via, eventually, their radiative or pi+hadrons decays.
443 - Hong-Wei Ke , Xue-Qian Li 2018
Multi-quark states were predicted by Gell-Mann when the quark model was first formulated. Recently, numerous exotic states that are considered to be multi-quark states have been experimentally confirmed (four-quark mesons and five-quark baryons). Theoretical research indicates that the four-quark state might comprise molecular and/or tetraquark structures. We consider that the meson containing four different flavors $subar bbar d$ should exist and decay via the $X(5568)to B_spi$ channel. However, except for the D0 collaboration, all other experimental collaborations have reported negative observations for $X(5568)$ in this golden portal. This contradiction has stimulated the interest of both theorists and experimentalists. To address this discrepancy, we propose that the assumed $X(5568)$ is a mixture of a molecular state and tetraquark, which contributes destructively to $X(5568)to B_spi$. The cancellation may be accidental and it should be incomplete. In this scenario, there should be two physical states with the same flavor ingredients, with spectra of $5344pm307$ and $6318pm315$. $X(5568)$ lies in the error range of the first state. We predict the width of the second state (designated as $S_2$) as $Gamma(X_{S_2}to B_spi)=224pm97$ MeV. We strongly suggest searching for it in future experiments.
The past seventeen years have witnessed tremendous progress on the experimental and theoretical explorations of the multiquark states. The hidden-charm and hidden-bottom multiquark systems were reviewed extensively in [Phys. Rept. 639 (2016) 1-121]. In this article, we shall update the experimental and theoretical efforts on the hidden heavy flavor multiquark systems in the past three years. Especially the LHCb collaboration not only confirmed the existence of the hidden-charm pentaquarks but also provided strong evidence of the molecular picture. Besides the well-known $XYZ$ and $P_c$ states, we shall discuss more interesting tetraquark and pentaquark systems either with one, two, three or even four heavy quarks. Some very intriguing states include the fully heavy exotic tetraquark states $QQbar Qbar Q$ and doubly heavy tetraquark states $QQbar q bar q$, where $Q$ is a heavy quark. The $QQbar Qbar Q$ states may be produced at LHC while the $QQbar q bar q$ system may be searched for at BelleII and LHCb. Moreover, we shall pay special attention to various theoretical schemes. We shall emphasize the model-independent predictions of various models which are truly/closely related to Quantum Chromodynamics (QCD). There have also accumulated many lattice QCD simulations through multiple channel scattering on the lattice in recent years, which provide deep insights into the underlying structure/dynamics of the $XYZ$ states. In terms of the recent $P_c$ states, the lattice simulations of the charmed baryon and anti-charmed meson scattering are badly needed. We shall also discuss some important states which may be searched for at BESIII, BelleII and LHCb in the coming years.
199 - Hong-Wei Ke , Xue-Qian Li 2018
Discovery of $X(5568)$ brings up a tremendous interest because it is very special, i.e. made of four different flavors. The D0 collaboration claimed that they observed this resonance through portal $X(5568)to B_spi$, but unfortunately, later the LHCb, CMS, CDF and ATLAS collaborations reports indicate that no such state was found. Almost on the Eve of 2017, the D0 collaboration reconfirmed existence of $X(5568)$ via the semileptonic decay of $B_s$. To further reveal the discrepancy, supposing $X(5568)$ as a molecular state, we calculate the decay rate of $X(5568)rightarrow B_spi^+$ in an extended light front model. Numerically, the theoretically predicted decay width of $Gamma(X(5568)rightarrow B_spi^+)$ is $20.28$ MeV which is consistent with the result of the D0 collaboration ($Gamma=18.6^{+7.9}_{-6.1}(stat)^{+3.5}_{-3.8}(syst)$ MeV). Since the resonance is narrow, signals might be drowned in a messy background. In analog, two open-charm molecular states $DK$ and $BD$ named as $X_a$ and $X_b$, could be in the same situation. The rates of $X_ato D_spi^0$ and $X_bto B_cpi^0$ are estimated as about 30 MeV and 20 MeV respectively. We suggest the experimental collaborations round the world to search for these two modes and accurate measurements may provide us with valuable information.
Recently, the LHCb Collaboration reported three $P_c$ states in the ${J/psi}p$ channel. We systematically study the mass spectrum of the hidden charm pentaquark in the framework of an extended chromomagnetic model. For the $nnncbar{c}$ pentaquark with $I=1/2$, we find that (i) the lowest state is $P_{c}(4327.0,1/2,1/2^{-})$ [We use $P_{c}(m,I,J^{P})$ to denote the $nnncbar{c}$ pentaquark], which corresponds to the $P_{c}(4312)$. Its dominant decay mode is $Lambda_{c}bar{D}^{*}$. (ii) We find two states in the vicinity of $P_{c}(4380)$. The first one is $P_{c}(4367.4,1/2,3/2^{-})$ and decays dominantly to $N{J/psi}$ and $Lambda_{c}bar{D}^{*}$. The other one is $P_{c}(4372.4,1/2,1/2^{-})$. Its dominant decay mode is $Lambda_{c}bar{D}$, and its partial decay width of $Neta_{c}$ channel is comparable to that of $N{J/psi}$. (iii) In higher mass region, we find $P_{c}(4476.3,1/2,3/2^{-})$ and $P_{c}(4480.9,1/2,1/2^{-})$, which correspond to $P_{c}(4440)$ and $P_{c}(4457)$. In the open charm channels, both of them decay dominantly to the $Lambda_{c}bar{D}^{*}$. (iv) We predict two states above $4.5~text{GeV}$, namely $P_{c}(4524.5,1/2,3/2^{-})$ and $P_{c}(4546.0,1/2,5/2^{-})$. The masses of the $nnncbar{c}$ state with $I=3/2$ are all over $4.6~text{GeV}$. Moreover, we use the model to explore the $nnscbar{c}$, $ssncbar{c}$ and $ssscbar{c}$ pentaquark states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا