No Arabic abstract
Recently, the LHCb Collaboration reported three $P_c$ states in the ${J/psi}p$ channel. We systematically study the mass spectrum of the hidden charm pentaquark in the framework of an extended chromomagnetic model. For the $nnncbar{c}$ pentaquark with $I=1/2$, we find that (i) the lowest state is $P_{c}(4327.0,1/2,1/2^{-})$ [We use $P_{c}(m,I,J^{P})$ to denote the $nnncbar{c}$ pentaquark], which corresponds to the $P_{c}(4312)$. Its dominant decay mode is $Lambda_{c}bar{D}^{*}$. (ii) We find two states in the vicinity of $P_{c}(4380)$. The first one is $P_{c}(4367.4,1/2,3/2^{-})$ and decays dominantly to $N{J/psi}$ and $Lambda_{c}bar{D}^{*}$. The other one is $P_{c}(4372.4,1/2,1/2^{-})$. Its dominant decay mode is $Lambda_{c}bar{D}$, and its partial decay width of $Neta_{c}$ channel is comparable to that of $N{J/psi}$. (iii) In higher mass region, we find $P_{c}(4476.3,1/2,3/2^{-})$ and $P_{c}(4480.9,1/2,1/2^{-})$, which correspond to $P_{c}(4440)$ and $P_{c}(4457)$. In the open charm channels, both of them decay dominantly to the $Lambda_{c}bar{D}^{*}$. (iv) We predict two states above $4.5~text{GeV}$, namely $P_{c}(4524.5,1/2,3/2^{-})$ and $P_{c}(4546.0,1/2,5/2^{-})$. The masses of the $nnncbar{c}$ state with $I=3/2$ are all over $4.6~text{GeV}$. Moreover, we use the model to explore the $nnscbar{c}$, $ssncbar{c}$ and $ssscbar{c}$ pentaquark states.
In a chromomagnetic model, we analyse the properties of the newly observed $P_c(4457)^+$, $P_c(4440)^+$, and $P_c(4312)^+$ states. We estimate the masses of the $(uud)_{8_c}(cbar{c})_{8_c}$ and $(uds)_{8_c}(cbar{c})_{8_c}$ pentaquark states by considering the isospin breaking effects. Their values are determined by calculating mass distances from the $Sigma_c^{++}D^-$ and $Xi_c^{prime+}D^-$ thresholds, respectively. It is found that the isospin breaking effects on the spectrum are small. From the uncertainty consideration and the rearrangement decay properties in a simple model, we find that it is possible to assign the $P_c(4457)^+$, $P_c(4440)^+$, and $P_c(4312)^+$ as $J^P=3/2^-$, $1/2^-$, and $3/2^-$ pentaquark states, respectively. The assignment in the molecule picture can be different, in particular for the $P_c(4312)^+$. The information from open-charm channels, e.g. ${cal B}[P_ctoSigma_c^{++}D^-]/{cal B}[P_cto J/psi p]$, will play an important role in distinguishing the inner structures of the $P_c$ states. Discussions and predictions based on the calculations are also given.
On March 26th, 2019, at the Rencontres de Moriond QCD conference, the LHCb Collaboration reported the observation of three new pentaquarks, namely $P_c(4312)$, $P_c(4440)$ and $P_c(4457)$, which are consistent with the loosely bound molecular hidden-charm pentaquark states composed of an S-wave charmed baryon $Sigma_c$ and an S-wave anti-charmed meson ($bar{D}, bar{D}^*$). In this work, we present a direct calculation by the one-boson-exchange (OBE) model and demonstrate explicitly that the $P_c(4312)$, $P_c(4440)$ and $P_c(4457)$ do correspond to the loosely bound $Sigma_cbar{D}$ with $(I=1/2,J^P=1/2^-)$, $Sigma_cbar{D}^*$ with $(I=1/2,J^P=1/2^-)$ and $Sigma_cbar{D}^*$ with $(I=1/2,J^P=3/2^-)$, respectively.
We study the newly reported hidden-charm pentaquark candidates $P_c(4312)$, $P_c(4440)$ and $P_c(4457)$ from the LHCb Collaboration, in the framework of the effective-range expansion and resonance compositeness relations. The scattering lengths and effective ranges from the $S$-wave $Sigma_cbar{D}$ and $Sigma_cbar{D}^*$ scattering are calculated by using the experimental results of the masses and widths of the $P_c(4312)$, $P_c(4440)$ and $P_c(4457)$. Then we calculate the couplings between the $J/psi p,,Sigma_cbar{D}$ channels and the pentaquark candidate $P_c(4312)$, with which we further estimate the probabilities of finding the $J/psi p$ and $Sigma_cbar{D}$ components inside $P_c(4312)$. The partial decay widths and compositeness coefficients are calculated for the $P_c(4440)$ and $P_c(4457)$ states by including the $J/psi p$ and $Sigma_cbar{D}^*$ channels. Similar studies are also carried out for the three $P_c$ states by including the $Lambda_cbar{D}^{*}$ and $Sigma_cbar{D}^{(*)}$ channels.
With the spin rearrangement, we have performed a comprehensive investigation of the decay patterns of the S-wave tetraquarks and P-wave tetraquarks where the P-wave excitation exists either between the diquark and anti-diquark pair or inside the diquark. Especially, we compare the decay patterns of $Y(4260)$ with different inner structures such as the conventional charmonium, the molecule, the P-wave tetraquark and the hybrid charmonium. We notice the $J/psi pipi$ mode is suppressed in the heavy quark symmetry limit if $Y(4260)$ is a molecular state. Moreover the hybrid charmonium and hidden-charm tetraquark have very similar decay patterns. Both of them decay into the $J/psi pipi$ and open charm modes easily. We also discuss the decay patterns of $X(3872)$, $Y(4360)$, and several charged states such as $Z_c(4020)$. The $h_cpi^{pm}$ decay mode disfavors the tetraquark assumption of $Z_c(4020)$.
We analyze the decay modes of the three $[frac 12frac 12^-]_{S=0,1}$ and $[frac 12frac 32^-]_{S=1}$ non-strange pentaquarks with hidden charm and bottom, predicted by holographic QCD in the heavy quark limit. In leading order, the pentaquarks %are composed of heavy-light mesons in bulk bound to an instanton core. They are degenerate and stable by heavy quark symmetry. At next to leading order, the spin interactions lift the degeneracy and cause the pentaquarks to decay. We show that the open charm (bottom) decay modes dwarf the hidden charm (bottom) ones, with total widths that are consistent with those recently reported by LHCb for charm pentaquarks. Predictions for bottom pentaquarks are given.